Beyond binary black holes

L. Lehner LSU NSF-ResCorp

New facilities, opportunities & challenges to <u>understand our universe</u>

LIGO

Why care about gravity?

• After all ... gravity is weak.....

Interaction	Strength	Acts on	Carried by	Quant. theory
Strong	10	Quarks	Color	OK
(short ranged)				
E&M	10-2	Charged	Electric	OK
(long ranged)		particles	charges/fields	
Weak	10-13	Quarks,	Flavor charge	OK
(short ranged)		leptons		
Gravitational	10-40	All particles	Graviton?	?
(long ranged)				

Gravity... by far the coolest interaction...

- Dominates over large distances (cosmology)
- Modifies the nature of the spacetime (eg. Around black holes)
- •*Mediates the most efficient conversion mechanisms from mass to energy*
- And we haven't a clue of what goes on below very small scales

What do we know? (when do we know?...)

• Linearized theory

- − Post Newtonian expansion (v→0, M/D→0) reasonable good handling to some given orders. [at least enough for \$200 GPSs....]
- Perturbations over fixed backgrounds. Good handling to 1st order in special cases, iffy from there on....

• Non-linear theory

 Global stability of flat spacetime understood in 1990 [Christodoulou-Klainerman, also Lindblad-Rodnianski 05].

We'd like to know

- Behavior around highly dynamical, strongly gravitating cases (v \rightarrow c, M/D ~ 1).
- Behavior close to singularities, connection to quantum gravity ideas
- Role in astrophysical phenomena.

Where to look for signatures of strong gravity?

- Astrophysical systems containing BHs, Neutron stars.
- Cosmological consequences of early universe scenarios
- Highly energetic configurations in the lab (assuming some flavors of string theory is correct).

All require understanding the solution of Einstein equations.

- Non-linear, highly involved, constrained, PDE system.
- Many different length scales involved.
- *Physics (2 d.o.f) 'hidden' in many variables.*
- Singularities mark the demise of the theory, and we want to look 'close' to them.

Numerical simulations only road to make head-ways.

- To obtain particular solutions
- To gain insights which can be exploited at the analytical level.

Two 'frontiers'

- GR in 'practical' context. Astrophysics
 - Describe accurately signals expected from sources likely to be detected. Gravitational Wave Astronomy.
 - Understand observed phenomena; e.g. gamma-ray bursts.

- Classical limit of prospective quantum gravity theories
 - Understand theories arising from quantum gravity efforts.
 - Deduce observable consequences

Astro-frontier

• Black holes

- end point of sufficiently massive stars collapsing
- end product of collisions of neutron stars
- Ruled by null rays (limit of those that reach to infinity)
- Can have max. angular momentum or something nasty happens
- Can not bifurcate unless something 'nasty' happens
- They're stable, if perturbed, they ring-down to a BH
- How do we see them?
 - Effects on neighboring matter \rightarrow EM, neutrino radiation. Eg Gamma ray bursts
 - Effects on the fabric of spacetime \rightarrow Gravitational Waves
 - Even with strong sources (collisions) GWs are quite weak, detectors alone have a hard time to catch the waves
 - Even when 'caught', we need to interpret signals and extract physical information.
 - Can we expect surprises?

Leading candidate: colliding black holes

Lating the time of the time of

Essentially no suprises. Waves smoothly transitioning from chirp to quasinormal ringing

Estimating the final outcome

- Early epoch: 2 bodies orbiting, physics captured via PostNewtonian effects. Internal structure doesn't matter
- Lat e epoch: given total mass & angular momentum, can express the soln in terms of damped harmonics.
- Early –to– late recipe: Mix Newtonian analysis with a pinch of General Relativity ([Buonnano,Kidder,LL 07])

$$L(M, a) = L_{orb} + S_1 + S_2$$

- M. sum of individual masses.
- L_{orb} from the reduced 2-body problem in a Kerr black hole at the innermost stable circular orbit. It depends on *M*,*a*

Is this it?

- Yes & no...
 - Much work ahead to map out signals for detection/analysis efforts
 - 'strange' configurations to probe particular aspects of the theory (e.g. naked singularities, high-speed collisions)
 - However... with only one dissipative mechanism not many possibilities left out. Unlikely path to surprises...
- Call it quits in 4D?... No way!
 - GR role in spectacular phenomena: gamma ray bursts, supernovae, etc.
 - More than one 'dissipative' channel \rightarrow requires richer, more complex simulations.
 - GR, hydrodynamics, magnetic fields, radiation transport, nuclear physics.....
 - Dump the Prius, get a BH! Efficiencies ~ 0.5 for M \rightarrow energy

Binary neutron stars

- Almost as compact as BHs.
- Lower masses than BHs → merge frequencies beyond current LIGO. Though advanced LIGO could see the merger itself
- Possible (short) gamma ray burst central engine (together with BH-NS).
- Can lead to an accreting BH system.
- Lots of ingredients required for a complete description of the problem
 - Equation of state? One reason to understand this system
 - Magnetic fields included. E.g. pulsars
 - Radiation transport.
 - Produce observable both gravitational and electromagnetic signals!
 - Challenge: put all this in a (super-duper) computer...

Putting (some) pieces together

- Infrastructure that implements grid adaptivity and parallelization
- General Relativity + Hydrodynamics + Magnetic fields (ideal MHD)
- Dissipation mechanisms:
 - Gravitational waves
 - internal fluid dynamics
 - Magnetic field effects (e.g. redistribution of angular momentum)

[Anderson, Hirschmann, LL, Liebling, Neilsen, Palenzuela]

(THIS) Merger leads to a differentially rotating star, massive enough to collapse, but has too much angular momentum!. Radiates excess and forms a BH
However... differential rotation would feed magnetic instabilities....

waves

Dynamics (B)

- Piece-meal approach has given different fields key clues into the behavior of many systems
- However richer phenomenology leads to different outcomes, depending on the goal this might be crucial

 Obvious time-invariant statement of the day: *As computers become more powerful, our description will become more realistic*

Going up in dims

- Beyond GWs, Astro and fundamental questions in 4D, NR can help in searches for Quant. Grav theories (at a very very very humble level)
 - Take classical limit and analyze what's there
 - Loop quantum gravity \rightarrow GR in 4D
 - String theory \rightarrow GR in higher dims coupled with extra fields.
 - Latter case... warning... better knock down lots of dims through symmetry considerations. As in 4D, black holes are handy...
- Features of these black objects?
 - Singularity inside at the classical level (OK)
 - Can not bifurcate unless a naked singularity shows up (OK)
 - Unique in spherical symmetry (NO!, wait what sphere?)
 - Natural questions!
 - What are the possible solutions?
 - are those stable?
 - What's their role (e.g. in black hole information paradox, stability of spacetimes)

Black strings

Contain singularities
 Ruled by null-rays

3.- Non-unique even in spherical symm

Stability?

0.10

0.08

0.04

Ω 0.06

- Entropy $S_{BS} < S_{BH}$ (for a given M)

Conjecture: Black strings will bifurcate

• Conjecture used in many scenarios

- Density of states from Ads/CFT correspondence
- Discussions of BH on brane worlds. BH in matrix theory, etc

Recent developments

- Horowitz-Maeda, can't bifurcate in finite time. *Conjecture: will 'settle' to a non-uniform stationary soln*
- Wiseman: stationary solns which are not the Horowitz-Maeda ones (too little entropy)
- Kol: Transition from black string to BH through a conical singularity

• Qns:

- What is the final solution of a perturbed black string?
- Can it bifurcate in 'infinite time'?
- Are Wiseman's solns, physically relevant?

[Choptuik,LL,Olabarrieta,Pretorius,Villegas 03]

Super-critical case

Curvature

t=150 t=158 t=164 t=113 t=138 t=144 (12) $I R^4_{AH}$ 9 t=40 t=80 t=0 æ C1 C2 ø ah C3 .----N 0 10 -5 0 5 -10 6 \mathbf{Z}

'Event' horizon

- Affine time, $\lambda = e^s$ growing exponentially (~10²²)
- "bifurcation" in infinite affine time certainly possible
- 'cascade' of unstable strings also possible

*

[Garfinkle-LL-Pretorius]

Where are we?

- Still not know what the final fate is.
- Dynamical process takes a long time to progress to highly distorted scenarios.
- More systems found in recent years whose dynamics is strongly linked to the black string (black saturns, highly spinning black holes, black branes, etc).
- Ongoing project to decipher it... keep posted

Final words

- Role of gravity in astrophysical systems being understood. While not significant suprises may arise gravitational dissipation competition with other process need be considered.
- Surprises still might lurke around, both in 4D and higher dimensional scenarios. These require strong fields/dynamics, which in turn requires simulations
- Definitively in the right time to attempt this!