Electromagnetic counterparts to loud gravitational wave events

L. Lehner (Perimeter Institute/Univ. of Guelph/CIFAR)

Driving goal I

[Pretorius 05,]

Not so fast?

LISA: superb signal to noise ratio [Phinney's, Baker's talks]

• waves will be ``seen'' directly and to very large redshifts (z~ 5-10 ...)

- Potential to do accurate astrophysics
- Potential to probe cosmology
- Potential to probe higher dimensional scenarios

•However:

localization to ~ square degrees
[Cutler's talk; Holtz-Hughes]
distance obtained is redshift
dependent

An electromagnetic counterpart resolve these issues

Nature cooperates...

- Understand both gravitational and electromagnetic wave emissions from key systems
 - Binary black holes interacting with surrounding media

10⁵¹ Ergs routinely inferred... even some 10⁶¹ ergs ?!

Studying relevant systems (BBH)

- Deal with spacetime curvature
 - Einstein equations. That's the 'solved' part! (ie... if you 'think' about it.. NR can give the answer)
- Black holes... are not really quite in vacuum...must deal with fields describing gas and electromagnetic fields
 - Poorly understood systems [we don't control the experiment]
 - Matter, what matter ?
 - Electromagnetic fields?
 - Emission process?

Two fronts.

(circumbinary picture [complementary to Bogdanovic])

Pre/prompt/post - merger emissions?

- (pre/prompt) Binary black holes as EM field stirrers

- (post) Binary black holes as bullies for matter

Merger of galaxies

-observations indicate the presence of supermassive BHs in the center of galaxies, surrounded by gas and an accretion disk
- these galaxies have undergone mergers → binary black hole merger

- further, AGNs \rightarrow BHs are surrounded by a disc of matter likely magnetized.

Merging Galaxies NGC 2207 & IC 2163 Spitzer Space Telescope • IRAC NA5A / JPLCaltech / D. Elmegreen (Vessar) sec2005-11a

Binary black holes and emissions

- Different possible options.
 - Postmerger events from circumbinary disks around BHs

[Milosavljevic-Phinney; Lipai-Loeb; Lipai et.al, Bonning et.al; Bode et.al; O'Neil et. al; Megevand et.al; Corrales et.al, etc.]

 Pre/merger events from gas/plasmas in between BHs / torques on disk

[Armitage et.al; MacFadyen et.al.; Dotti et.al; Chang. et.al.; Palenzuela et.al.; Bode et.al...]

After merger consequences

- Circumbinary disk 'knows' a merger takes places 'after the fact'
 - ~ 5% energy radiated, most during last orbit: gravitational potential weakens 'suddenly'
 - Recoil in a given direction
 - in both cases, the disk needs to readjust

Approach: GR+Hydrodynamics

- Einstein equations
 - Generalized Harmonic formulation:
 - Constraints : $C_a = \Gamma_a + H_a$

Einstein eqns:
$$R_{ab} = \nabla_{(a}C_{b)} + {}^{TR}T_{ab} + \kappa \{2n_{(a}C_{b)} - g_{ab}n^{c}C_{b}\}$$

- Expressed in terms of g_{ab} ; H_a from stationary solution.
- Cowling approximation is enough.
- GRHydro:

Eqns determined by:

$$\nabla_a T^{ab} = 0 \quad ; \quad \nabla_a (\rho u^a) = 0$$

$$T_{ab} = (\rho_0 (1 + \varepsilon) + P) u_a u_b + Pg_{ab} + F_a^c F_{bc} - \frac{1}{4} F^{cd} F_{cd}$$

 $\nabla^{a}\nabla_{a}x^{u} = H^{u}$

- Expressed in terms of conservative variables, (use of HRSC)
- Eqn of state:

$$P = (\Gamma - 1)\rho_o \varepsilon \qquad (though, P = k\rho_0^{\Gamma} for ID)$$

- Present case Γ =5/3, ideal MHD eqns. Results for B=0.

[Megevand et.al 2009]

'kicked black holes' retaliate

 Both mass reduction and recoil speed have an impact on the disk's behavior. Relevant quantities: v_{kick}; v_{sound}; v_{orbital}

If shocks develop → shock energy onto the disk → can induce
 EM signals

• from there on... take your pick...

- Lipai et. al. : prompt and in the UV
- Bonning et. al. : delayed and in soft Xrays
- Phinney et. al. : not kicks but mass reduction, significant output
- O'Neil et. al. : not kicks but mass reduction, lowering of luminosity

Symmetry preserving cases

Symmetry breaking cases

• In all cases, significant heating of disk is induced

- Robust behavior
- Time of 'swing' appearance
 - T ~ 5200 912 ln ($(v_k) \rightarrow /300 \text{ km/s}$)
- Strong (short) variability would certainly impart its characteristics to EM production process
- Caveats:
 - Long term behavior, influenced by Papalaziou-Pringle 'instability'

- T ~ T_{ref} – (2/w) ln ((v_k) \rightarrow / v_{ref}) , w ~ 0.45 (too high!)

- Ongoing work on thin disk to remove this issue.
- Role of Magnetic fields might be important.
- Role of cooling important!
- Particular emission process?

Taking images..

Radiation transfer eqn:

$$\frac{d I_{\upsilon}}{d\lambda} = -p^a u_a (\eta_0 - \chi_0 I_{\upsilon})$$

Options:

 $\frac{Brehmstralung-blackbody\ model}{\eta\ brehmstralung\ emmisivity} \chi\ modified\ Krammer's\ opacity\ law}$

<u>Thermal model</u> η Kirchoff's law η= χ (Planck law) χ Krammer's opacity law

Brehmstralung vanilla $\int \rho^2 T \, dV$

[a la, Schnittman; Noble]

Xrays

[Anderson et.al, 2009]

Infrared

Conclusion (I)

- BH recoil can produce observable consequences by affecting the disk.
- However... it might be too late, need to roll a dice with 10⁵ faces!

Binary black holes as blenders. A new spin on an old story (though without spin) How does the curvature/dynamics influence EM fields?

[Goldreich-Julian,

Blandford-Znajek]

- Blandford-Znajek. "Penrose" process for Kerr bh's surrounded by magnetic fields (anchored by the disk)
- Stray charges accelerate → pair production cascade. BH becomes surrounded by a tenuous conducting plasma with little inertia

Approach: Force-free electrodynamics

$$\nabla_{a} T^{ab} = 0 \quad \Rightarrow \quad \nabla_{a} T^{ab}_{(\text{fluid})} = - \nabla_{a} T^{ab}_{(\text{em})} = -F^{ab} J_{a}$$

if $\rho, P \ll B^{2}$ then $\nabla_{a} T^{ab}_{(\text{fluid})} \ll F^{ab} J_{a} \approx 0$
 $\mathbf{E} \cdot \mathbf{J} = 0$, $\mathbf{q} \mathbf{E} + \mathbf{J} \times \mathbf{B} = 0 \rightarrow \mathbf{E} \cdot \mathbf{B} = 0$

Stationary spacetime: (Gammie, McKinney 04)

 $\Rightarrow for$

$$E \bullet B = 0 \to F_{ab} * F^{ab} = 0 \to A_{\phi,\theta} A_{t,r} - A_{t,\phi} A_{\phi,r} = 0$$

so
$$\Omega_F \equiv -\frac{A_{t,r}}{A_{\phi,r}} = -\frac{A_{t,\theta}}{A_{\phi,\theta}} = \frac{F_{tr}}{F_{r\phi}} = \frac{F_{t\theta}}{F_{\theta\phi}}$$

$$\begin{split} E_{,t} &= 2\pi \int_{0}^{n} \sqrt{-g} F_{E} d\theta \quad (with \quad F_{E} = -T_{t}^{r}) \\ \rightarrow F_{E} &= 2(B^{r})^{2} \Omega_{F} r(\frac{a}_{2Mr} - \Omega_{F}) \sin^{2}(\theta) - B^{r} B^{\theta} \Delta \sin^{2}(\theta) \\ thus, \\ F_{E} \Big|_{r=r_{H}} &= 2(B^{r})^{2} \Omega_{F} r_{H} (\Omega_{H} - \Omega_{F}) \sin^{2}(\theta) \\ \Rightarrow for \quad 0 < \Omega_{F} < \Omega_{H} \quad and \quad B^{r} \neq 0 \quad energy \ out \ of \ horizon \end{split}$$

Plasma is crucial for this to happen

Examples...

• Kerr in vacuum and FF immersed in uniform field

• In vacuum \rightarrow no radiation

With plasma → currents on the horizon 'complete the circuit'
 Membrane paradigm: wrt asymptotic observers, circuit moves through a B field → EMF produced.
 BH becomes the battery.
 [Damour,Phinney,Thorne,McDonald...]

Single BHs, disk alignment?

• we knew. $P \sim B^2 a^2$ in the aligned case [Tchechovskoy,Narayan,McKinney 2010].

• For misaligned case?

• Poynting flux still there, along B

• $P \sim B^2 a^2 (1 + \cos^2)$

[Palenzuela,Garret,LL.Liebling, to be subm]

Onto binaries

- Head on & quasicircular, equal mass. *non-spinning*
- Magnetic field as given by a 'circular loop' at far distances ~ constant within computational domain
- Field strength ~ 10⁴G
 - For this value, if $M_T = 10^8 M_O$, EM Energy dens ~ $10^{-16} [1/M^2]$
 - \rightarrow EM fields won't affect binary dynamics, but the other way around

Head-on case.

- Poynting flux,
 - What sources it ?
 - field lines tension/breaking as BH pulls them
 - Membrane paradigm: "Charge" separation induced by "Hall effect", thus circuit is still there and still moving through B.
 - Poynting flux induced, though shuts off after merger

Onto the binary case

 Orbit → Black holes move through B. As in head-on case, 'circuit' can be Established due to charge separation (see in vacuum case already, [Palenzuela et.al.])

• Thus, expect Poynting flux through orbiting stages. Also at late time (BZ).

t=0.00	zscale=1.000e-01 31 x47 [-528 000,528 000], [-528 000,528 000]	t=0.00	zscale=1.000e-01 29 ± 37 [-528 000,528 000] [-528 000,528 000]
-1.00e-07 1.00e-07		-4.00e-06	4.00e-06

(a) $-8.2 M_8$ hrs

(b) $4.6 M_8$ hrs

 Ω_{F} this need not make sense!

Poynting flux

• Energy flux:

• Strong emission throughout. Burst around merger epoch

m=2 \rightarrow 0 transition

Distributed energy output

- Making contact with astro... recall $(R_{orb} \Omega_{orb}) < 1$
- GW energy flux ~ $R^4_{orb} \Omega^6_{orb} M^2_{orb}$ --strong emission--
- EM energy flux ~ $(R_{orb} \Omega_{orb})^2 B^2$ --weaker but sustained, doesn't shut off after merger--

- Spinning case will have BZ on top. Also, particularly 'cute' scenarios should show an interesting phenomenology
- For 10⁴G, 10⁸M₀ flux ~ 10⁴³⁻⁴⁴ ergs. IF Poynting flux energy efficiently transferred to observable emissions, interesting pre/post merger observations possible; to z=1 ?