Recess is over! Understanding gravity in strong regimes in time for observations

> L. Lehner LSU NSF

- From our naked eye, to highly sophisticated observatories we've been gathering 'light' to peek out there...
 - This light is produced by charged particles oscillating, which produce variations in the electromagnetic field, which propagate through the space(time) towards us
- This isn't all we get... we might 'feel' variations of the spacetime itself. *Gravity waves. What do they have*

to say?

detectors...

Neutron Star Binaries: Initial LIGO: ~10-20 Mpc → Advanced LIGO: ~200 Mpc Most likely(?) rate: ~20/yr

And may be to space... LISA

Gravity... < 1915 <u>Newtonian Gravity</u>

• Absolute reference frame, preferred time

$$\nabla^2 \Phi = 4\pi\rho$$

Gravitational Potential

Matter

- 1 Elliptic equation to solve (with well defined rhs)
- Potential Φ defined on an Euclidean manifold
 - Newtonian spacetime (E³, Φ) [Distances: $ds^2 = dx^2 + dy^2$]
- 'Signals' propagate at *infinite* speed
- Trajectories determined by forces
- Gravity is a force field

Einstein's theory

- System of ten partial differential equations that yields the *spacetime geometry*.
- Geometry encoded in g_{ab} . Spacetime (M, g_{ab}).(unique geometry, g_{ab} not quite unique)

Flat spacetime!, just in different coordinates: Cartesian, cylindrical

- A metric allows us to measure distances.
- Fields determine a Lorentzian metric.
- 'Signals' propagate at the speed of light \rightarrow wave smell...
 - Move the earth... the moon will feel it 1.3 secs later

Einstein's theory cont.

- Trajectories 'straightest paths' on curved manifold
- Matter/Energy curves spacetime and that in turn affects trajectories in it. For example:
 - Precession of Mercury's orbit
 - Deflection of light around the Sun

Gravity is a *manifestation* of the geometry

$$G_{\mu\nu} = \kappa T_{\mu\nu}$$
 Chis is a mess!

Gravitational 'vs' electromagnetic waves

Oscillations of the spacetime itself	Oscillations of EM fields propagating through spacetime		
Coherent emission by bulk motion of matter & energy	Incoherent superposition of waves from molecules, atoms and particles		
Freqs ~ 1kHz and down by 20 orders	Freqs ~ 1Mhz and up by 20 orders		
Basically unscattered	Strongly interacting with matter between source & detector		
observable falls as 1/r	Most observables 1/r ²		
10 ⁻⁴³ secs after BB	After decoupling: 10 ⁵ yrs after BB		

Are they for real?

- Extremely weak, not yet measured directly
 - Predicted in the theory by 1916 (and even Einstein doubted them!)
 - Experimental search ~ 1970 by Joseph Weber (bar detectors) + plans for interferometers by Ray Weiss (~78).
 - Taylor & Hulse measure variation in period of pulsar (pulsar 1913+16) in 1974. Excellent agreement with the prediction of G.R. (Nobel prize in 1993).

- Want to detect gravitational waves and understand what produced them
 - In many cases, there will not be an observable counterpart (e.g. Not beamed to us, black holes...)

Understand you must what you can see not...

What do we know? (when do we know?...)

Linearized theory

- Post Newtonian expansion (v→0, M/D→0) reasonable good handling to some given orders. [at least good enough for \$100 GPSs....]
- Perturbations over fixed backgrounds. Good handling to 1st order in special cases, iffy from there on....

• Non-linear theory

Global stability of flat spacetime understood in 1990
 [Christodoulou-Klainerman, also Lindblad-Rodnianski 05].

We'd like to know

- − Behavior around highly dynamical, strongly gravitating cases $(v \rightarrow c, M/D \sim 1)$.
- Behavior close to singularities, connection to quantum gravity ideas
- Role in astrophysical phenomena.

What we knew about BHs... Vacuum soln of Einstein eqns, end point of collapse, by-product of collisions, etc.

 Blackness?: 'Causal signals' can't propagate from the inside of some region (causal signals take 'forever' to leave the region, boundary = BH surface = Event Horizon)

What we knew about BHs...

- Vacuum soln of Einstein eqns
- Blackness?: 'Causal signals' can't propagate from the inside of some region (causal signals take 'forever' to leave the region, boundary = BH surface = Event Horizon)

• They are 'stable'

(are they always? ... higher dims...)

They're simple....

- If all transients take place, they'd go to a simple timeindependent state.
- Characterized by 2 quantities! M, a
 - No matter what produced them!

They're powerful....

- Extreme 'dragging' around rotating black holes.
- Energy extraction from a rotating black hole, most efficient way to convert matter into energy! (~10%!)
 - Eg. Penrose and Blandford-Znajeck processes.

Orbits around BHs and Kepler's problem.....

- For 'large' distances... leading behavior just as in Newtonian theory
 - However, beyond it, orbits 'shrink' due to the emission of GWs
- For r< r_{BH}, well... we die...

- For r_{BH} < r < r_{ISCO}
 - No stable circular orbits even at leading order

But beyond that?

- Not much was known until recently...
- Large computer simulations required to study the system
 - Run on supercomputers
 - Dealing with a messy system of equations

In the end... the picture turned out quite simple

Essentially no suprises. Waves smoothly transitioning from chirp to quasinormal ringing

[Pretorius 06, everyone else shortly after]

But what's the scoop?

- Radiation: convert ~ 5% of total initial mass and angular momentum. (can be higher for 'tuned' collisions)
- Asymmetric scenarios give rise to kicks, these can be as large as 3-4 10³ km/s! (claim Quasar SDSS J092712.65+294344.0)

- Yet... these need some tweaking.

A few 100s km/s more typical.

• As interesting as these might be... back of the envelope arguments do go a long way.

Estimating the final outcome

- Early epoch: 2 bodies orbiting, physics captured via PostNewtonian effects. Internal structure doesn't matter
- Late epoch: given total mass & angular momentum, can express the soln in terms of damped harmonics.

A e⁽³⁾ / e⁽²⁾ B e⁽¹⁾

• Early –to– late recipe: Mix Newtonian analysis with a pinch of General Relativity ([Buonnano,Kidder,LL 07])

$$L(M,a) = L_{orb}(M,\mu,a) + S_1 + S_2$$

- M. sum of individual masses.
- L_{orb} from the reduced 2-body problem in a Kerr black hole at the innermost stable circular orbit. It depends on *M*,*a*

Does this work?

Case [Reference]	af/M	l(deg)	a_f/M	$\iota(deg)$
C ₁ [31]	0.67		0.66	0
C ₂ [31]	0.72	7.	0.71	23
C ₃ [31]	0.68		0.66	0
C4 [31]	0.73		0.71	23
C ₅ [31]	0.64	-	0.61	34
C ₆ [31]	0.81	-	0.82	14
C7 [31]	0.80	-	0.82	14
C ₈ [31]	0.80	-	0.82	14
SP3 [8]	0.72	18	0.70	21
SP4 [8]	0.81	10	0.80	13
SP ₆ [32]	0.50	33	0.48	35

For 'broad' purposes:

PostNewtonian + Particle on a BH spacetime + Quasinormal modes is enough

Yet... delicate measures require much more accuracy... work to come

There is certainly a lot more....

- Many other systems of interest:
 - Binary neutron stars
 - Black hole-neutron stars
 - BHs and effects on surrounding disks
- These might have electromagnetic counterparts.
 Furthermore, they are key ingredients for already observed phenomena.

NS-NS

• For grav waves.

- Early pre-merger stages: PN is good enough
- Late pre-merger: careful, internal structure may play a role
- Merger, postmerger: prompt vs. delayed collapse to a BH and other features, we could use to determine eqn of state.
- Can different effects be disentangled?
- Beyond these, other key qns
 - Does the merger give rise to a BH with sizeable disk?, what is its final spin, magnetic field strength etc?
 - How long does the hypermassive star exists before collapsing?
 - All these connect directly with short GRBs models

Initial configuration. (Not 'too physical'...)

- Equal non-rotating polytropes to represent the stars (Γ=2). (R_s=16.26km, M~0.9 M₀)
- Poloidal seed magnetic fields, antialigned with orbital angular momentum in each star. B ~ 9 10¹⁵ G
- Initial separation ~ 4 R_s
- Grid : $[-100R_s, 100R_s]$; up to 7 levels of refinement Δ_{min} =0.46km. Gravitational waves extracted well within the wave zone.

Dynamics: Pre-Merger

• Early dynamics should be mostly insensitive to magnetic fields. To zeroth order

$$F_G \sim \frac{m_1 m_2}{r^2}; F_M \sim \frac{\mu_1 \mu_2}{r^4}$$

 To higher order, essentially a spin-spin PN interaction calculation, overall, expect at most 2% cycle difference as long as point-particle approximation holds if fields stay < 10¹⁶G. [loka-Taniguchi 00]

$$N_{mag} \sim 610^{-3} \left(\frac{H_1}{10^{16} G}\right) \left(\frac{H_2}{10^{16} G}\right) \left(\frac{m_1 + m_2}{2.8M_{\odot}}\right)^{-13/3} \left(\pi m_{tot} f\right) \Big|_{f_{min}}^{f_{max}}$$

As long as PN approx holds, this should be fine...

 $\rho = 10^{14} g/cm^3$

ρ=8 10¹³g/cm³

 K-H instability, shear energy into magnetic fields which grow ~ 1 order of magnitude. Growth saturates ~ Alfven time-scale

 Hypermassive star differentially rotating at rates different from the non-magnetized case

0 Be+15 1.2e+16

 $\rho = 10^{14} \text{g/cm}^3$

Less obvious effects

Magnetic Buoyancy

B ~ 10¹⁷G

I = 2 decreasing consistently with gravitational wave emission rateI = 4 'Cartesian grid' induced remains under control throughout

I = 1 mode growing, consistent with Tayler's instability (magnetic field)

'bulk' dynamics & consequences

Amplitudes ~ Consistent with noise level to 2-4Mpc in current LIGO

Matches:

- 0.98 to t=7.5ms
- 0.63 to t= 12.5ms
- 0.59 to t=25ms

[related to Price-Rosswog 06]

What's the scoop?

- First... take everything with a warning...
 - We've only taken the first steps.
 - Eqn of states? Magnetic fields? Neutrinos? Different configurations...
- For current LIGO, merger takes place beyond most sensitive area ⁽²⁾
- For advanced LIGO, this isn't the case! Furthermore, they need info now as it could be tunable ☺
- Picture emerging is that eqn of state, better be pinned down prior to merger, post-merger can give ideas of magnetic field strengths... (can neutrinos mess it up?)
- Is this all?...

Other hints...

Could these induce asymmetric bubbles? [Bucciantini et. al.]
how about long-term behavior of the disk? Other models will need to take over [Metzger et.al.]

as opposed to BH-BH case, too early to hand it over....

Magnetic fields not strongly affecting things for a=0. Significant disks require high spins [Etienne et.al, Shibata etal, us].

Spin value of final BH could tell the systems apart (NS-NS, BH-NS)

Back to binary black holes

 In galaxy mergers → Binary black hole collisions surrounded by a circumbinary disk

– Impact of BHs on the disk?

– Impact of disk on possible effects around BHs?

'kicked black holes' retaliate

GW Signals associated with the kick process will come before the electromagnetic ones, another tantalizing prospect to combine both efforts. [Milosavljevic-Phinney 05]

- EM signals? Shock energies damped onto the disk, from there on... take your pick...
 - Lipai et. al. : prompt and in the UV
 - Bonning et. al. : delayed and in soft Xrays
 - Phinney et. al. : not kicks but mass reduction, significant output
 - O'Neil et. Al. : not kicks but mass reduction, lowering of luminosity

Stirred, not mixed: 'B-Z' for binaries

- Energy extraction in a spinning BH can power jets, etc.
 Can binaries add to the mix?
- Ingredients: GR + Maxwell Eqns (ElectroVac)

Enhancement of E&M fields during merger epoch... BZ on steroids?

outlook

- Gravitational waves are still the unheard audio-track, it promises to be pretty darn good, community willing to pay the price.
- Experimental status is very good. Target sensitivity for LIGO reached.
- Adv LIGO in good shape and LISA plans on the way (?).
- Theoretical status is 'under control' for LIGO sources, not for LISA!
 - PN + Num Rel (or alternatives) + Quasinormal modes complete the description for binary black holes. Other sources on the way
 - SMBH + small object. Conceptual issues remain, crucial to separate the see of signals (LISA)
- In many cases, will get info out of phenomena without optic counterpart.
- In others, there will be optical counterpart, and combination should tell a nice story (eg. Gamma ray bursts). Collaborations and 'early warnings', etc.
- Undoubtedly, the full movie will be great, expect surprises as everytime a new instrument came along. *Do we have some in store?*

Black holes can misbehave! (in higher dims)

1.- Contain singularities
 2.- Ruled by null-rays
 3.- Non-unique even in spherical symm

Stability?

- Black string perturbations admit exponential growth for $L > L_c$ (Gregory-Laflamme)

- Entropy S_{BS}<S_{BH} (for a given M)

Conjecture: Black strings will bifurcate

• Conjecture used in many scenarios

- Density of states from Ads/CFT correspondence
- Discussions of BH on brane worlds. BH in matrix theory, etc

Recent developments

- Horowitz-Maeda, can't bifurcate in finite time. *Conjecture: will 'settle' to a non-uniform stationary soln*
- Wiseman: stationary solns which are not the Horowitz-Maeda ones (too little entropy)
- Kol: Transition from black string to BH through a conical singularity

• Qns:

- What is the final solution of a perturbed black string?
- Can it bifurcate in 'infinite time'?

[Choptuik,LL,Olabarrieta,Pretorius,Villegas 03]

Curvature

Cascading effect possible? Have we seen this before???

And BH super-radiance?

• Dumb holes $\leftarrow \rightarrow$ Black hole association (Unruh)

 Inspiraling water down the drain, induced metric ~ Kerr BH, water drain crests can be explained as a super-radiance effect [Unruh-Schutzhold]

Perhaps a surprise will be to get a better appreciation of our bathtubs ③