Magnetic field effects on gravitational waves from binary neutron stars

Matthew Anderson¹, Eric Hirschmann², L. Lehner¹, Steven Liebling³, P. Motl⁴, David Neilsen², C. Palenzuela^{4,5}, J. Tohline⁴ ¹Department of Mathematics, Brigham Young University ²Department of Physics and Astronomy, Brigham Young University ³Department of Physics, Long Island University ⁴Department of Physics and Astronomy, Louisiana State University ⁵Max-Planck-Institut, AEI

Overview

- Magnetic fields are present in most astrophysical systems
- They can strongly influence the dynamics of stars
- They play important roles in AGN's, pulsars, GRB's
- We want to make connections to GRB's

AMR

Berger-Oliger style AMR Vertex centered AMR Shadow hierarchy for refinement HAD toolkit: http://had.liu.edu

Tapered AMR boundaries

Hyperbolic Divergence Cleaning

- Control the solenoidal constraint: $\nabla \cdot B = 0$.
 - Introduce a generalized
 Lagrange multiplier

Simulation Description

 $M=0.89~M_\odot$

 $r=16.26 \rm km$

 $\rho_c=3.24\times 10^{14}~{\rm g/cm^3}$

 $\Gamma = 2$ $\max(|B|) \sim 9.6 \times 10^{15} \text{G}$

- Initial separation: 60 km
- Domain: [-1540 km, 1540 km]
- 7 levels of refinement, highest resolution $\Delta = 0.46$ km.
- Ψ_4 extraction radii: $r = \{440, 590, 740\}$ km

MHD vs HD

MHD vs HD

MHD vs HD

Conclusions

- Magnetic fields impact rotation profile, merger timescale, and waveforms
- Future work: explore realistic equations of state
- Supported by NSF grants PHY-0653369, PHY-0653375, AST-0407070, AST-0708551, PHY-0326378, PHY-0502218, PHY-0325224.