Modeling Strong Field Gravity: Vacuum Collapse and Boson Stars

Steven L. Liebling Long Island University July 12, 2007 GRG18

Plan:

- · Implementation · Applications - Brill Wave Collapse
- Global String Loop Orbiting Boson Stars
- · Summary

HAD

- Distributed AMR via MPI

- Office AMR Vid Wirf
 Vertex and cell centered
 Couple various projects together
 Black hole excision
 Surface Extraction
 Tapered AMR boundaries [labor_min]
 Elliptic Solves
 Public Release: http://had.lin.edu
 Projecte:

- Public Release: <u>http://had.liu</u>
 Projects:
 MHD
 GR...harmonic
 GR...ADM
 Various scalar Field models

Example: MHD + GR

MHD Vertex Centered HRSC
 HLLE Flux w/ CENO PPM
 Hyperbolic Div. Cleaning GR...Harmonic Same time integrator - MOL - RK3

Brill Critical Collapse

- \cdot Vacuum gravitational waves
- · 1+Log time slicing Vary initial "amplitude":

- Weak → dispersal
 Strong → BH formation
 Search for threshold:
 Black Hole Critical Behavior
 First found (1D) by Choptuik '93
- Next found (2D) by Abrahams & Evans '93

 $R_{abcd}R^{abcd} \propto \left|p^*-p\right|^{-4\gamma}$

From Fit:

 $\gamma \approx 0.23 \pm ?$

Cosmic String

- · Topological defect
- Two kinds:
- Local—gauged
 Global—long range
 Interesting because:
- Phase transitions in early universe
- String Theory High energy astro (e.g. cosmic rays, GRB)
- Detectable via gravitational waves

Modeling Strings

· Usual Approach:

- Local strings

- Simple gravity (e.g. linearize)

- Assume infinitely thin-Nambu-Goto action

Modeling Strings

- unusual Usual Approach:
- global -Local strings
- Field theory Assume infinitely thin—Nambu-Goto action Full GR Simple gravity (e.g. linearize)

Orbiting Boson Stars

- Localized, nonsingular, stationary, asymp. flat
 GR + Complex Scalar Field
- Interest: *Mathematical*: solitonic behavior similar to Q-balls
- Q-balls Cosmological: supermassive objects at centers of galaxies? Dark matter candidate? Astrophysical: similar to neutron stars, has stable/unstable branches, compact objects

Summary

- Brill Critical Collapse
 Indications of subcritical power law scaling with periodic wiggle (DSS)
 AMR evolutions w/ Maximal Slicing soon might reveal echoes
 Global String Evolutions
 Indications of gravitational radiation from collapse of loops
 More complicated initial data and possibly gauged strings to follow
 Orbiting Boson Stars
 Useful probe of GR signal from compact objects
 Interesting phenomenology...questions about stability, transitions, rotating solutions