Gravitational Collapse With Distributed Adaptive Mesh

Steven L. Liebling Long Island University - C.W. Post Campus April 23, 2006 A.P.S. April Meeting Dallas, TX

Progress on different fronts:

- Novel AMR Boundary Treatment
- Gravity
- Magnetohydrodynamics (MHD)
- Cell Centered/Flux Conservative Fluid
- Nonlinear Wavemaps

Tapered Boundary

- · Fine grids have artificial boundaries w/in
- computational domain
- Require information from parent/coarse grid
- Discard points causally connected to boundary

Tapered Boundary		
	No interpolation in time	t=0.5 0.8 1.1
•	Easily extends to higher order	wwww.w_w_w
•	Example: 3 rd order derivatives w/ a nonlinear scalar field	1.3 1.6 1.9 1.9 1.9
	demonstrates: – Excellent convergence – Good "transmission"	2.7 6 9
		-4-2024ĭ x

Full GR in 3D

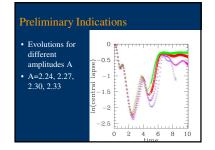
- 1st Order symmetric hyperbolic scheme of Derivative operators satisfying
- summation by parts
- Maximally dissipative outer boundary conditions...set time derivative of incoming modes to zero Time harmonic lapse

Gravitational Collapse of Brill · Initial data generated: Axisymmetric Vacuum solutions

$$ds^{2} = \Psi^{4} \left(e^{2q} \left(d\rho^{2} + dz^{2} \right) + \rho^{2} d\phi^{2} \right)$$

- Where
$$A\rho^2$$
 (Eppley's form

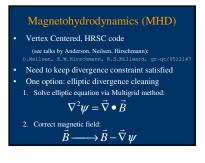
 $q = \frac{1}{1 + r^{10}}$ • Choose amplitude A, determine if black hole forms:

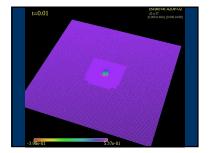

- Apparent horizon finder - Collapse of lapse

Gravitational Collapse of Brill

- Look for threshold of black hole formation:
- A>A* black hole forms - A=A* - critical point
- A<A* energy disperses

• Difficulties:


- Horizon finder issues In contrast to maximal slicing, lapse may not "know" global property of hole formation

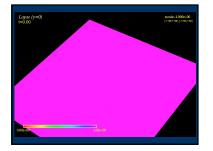

Black Hole Excision

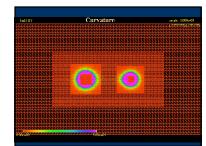
- · Excise black hole singularity from computation · Choose excision region small enough to ensure
- all modes incoming
- Excise along cubes to simplify derivative operators which satisfy SBP
- · Modified Kreiss-Oliger dissipation operator

Pulsar Wind Nebulae (PWN) • Model the interaction between: A pulsar's "spin down luminosity" ISM in which pulsar is moving · Look for bow shock structure...match against Pulsa Wind

Cell Centered Evolutions

- Fluid codes generally use integral form of equations
 Flux conservative schemes explicitly conserve the evolved quantities
- Very useful for certain situations: Stars—conserve massBinaries—conserve angular momentum
- No conservative scheme w/ vertex centered AMR S. Li, J.M. Hyman: LA-UR-03-8927
- We can define fields as either vertex or cell centered · Still need to implement coarse grid correction


Nonlinear Wavemaps


- Flatspace w/ scalar fields
- Scalar fields act as coordinates-on/map-to a target space
- So-called Harmonic Map:
- From base space: Minkowski 3+1 To target space: constant curvature 2D surface (S² or hyperboloid)
- Interesting dynamics, expect critical behavior at threshold of singularity formation

- Modeling full GR w/ distributed AMR: Black hole critical behavior
 Dynamic black hole excision
- · MHD and GRMHD promise lots of physics
- Study coupling of cell-/vertex centered fields
- · More interesting wave map results

