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Different regimes of the Maxwell Different regimes of the Maxwell 
equationsequations

       Vacuum

    
Magnetospher
e

Star

•  Star or disk 
 Dominated by the fluid

     IDEAL MHD

• Magnetosphere  
  Dominated by the EM

     FORCE FREE

• Vacuum 
   no sources

     MAXWELL EQS.
   



   IDEAL MHD
       (σ→ ∞)      

  FORCE FREE
  (qE +J x B = 0)

  MAXWELL EQS.
         (σ→0)       
   

∂t E - ▼x B = -J
∂t B + ▼x E =  0
▼∙ B = 0
▼∙ E = q

J = σ (E + v x B)

  σ  : conductivity

     E = - v x B
     ∂t B - ▼x E =  0
    ▼∙ B =0

     E ∙B=0
     ∂t B - ▼x E=0
     ▼∙ B =0
 
     ∂t E - ▼x B = 0
     ∂t B + ▼x E =  0
     ▼∙ B = 0
     ▼∙ E = 0

    Maxwell equations in 3 regimesMaxwell equations in 3 regimes



  MotivationMotivation

• The ideal MHD approximation seems to describe properly 
many astrophysical scenarium (long list), but
   - they may lead to very distorted field lines reconnections
   - anisotropic effects coming from the Hall term

• The force free approximation describe well the 
magnetospheres of NS and BHs, but
   - they may lead to current sheets  anomalous resistivity

• Is it possible to have different limits/approximations in the 
same physical problem?



    The relativistic MHD equations The relativistic MHD equations 
(I)(I)
•  the description of a fluid in presence of EM fields
     is given by:

1) Conservation of mass and total energy and 
momentum + EOS closure relation 

    Hydrodynamic equations to describe the fluid
    ρ: density, ua: 4-velocity, ε: internal energy, P: pressure

       ▼a (ρ ua) = 0   ,     ▼a Tab  = 0     ,    P = P(ρ,ε) 
                    

Tab  = [ρ(1+ε) + P]ua ub + P gab  + [Fac Fc
b – (Fcd Fcd )gab /4]



    The relativistic MHD equations The relativistic MHD equations 
(II)(II)
 2) (Extended) Maxwell equations for the EM fields 

▼a  (Fab  + gab  Ψ)   = -Ib  + κ nb Ψ        Fab  : Maxwell tensor

     ▼a  (*Fab  + gab  Φ) = κ na Φ            Ib   : current 4-vector

       ▼a Ia = 0        Ia = na q + Ja            q  : charge,  Ja: 3-current
  

 3) The coupling between the fluid and the EM fields, 
which is given by the choice of current Ji .



    The relativistic MHD equations The relativistic MHD equations 
(III)(III)

  - 3+1 decomposition (special relativistic)

  h = ρ(1+ε) + p
 W = (1-v2)-1/2



        The generalized Ohm’s law (I)The generalized Ohm’s law (I)

• The first charge moment of the Boltzmann equation 
for a two-component fluid (electrons and ions) in the 
newtonian case

induction,
ideal MHD

Ohmic term, allows 
for dissipation

Hall term,introduces 
anisotropies wrt B

battery

electron inertia,
neglegible



        The generalized Ohm’s law The generalized Ohm’s law 
(II)(II)

• Keep not only the induction term, but also the 
Ohmic and the Hall ones. In the collision-time 
approximation, in full GR covariant form 

written in terms of the charge density and EM fields measured 
by a observer co-moving with the fluid

  Ia = q ua + σab  ea              σab =σ(gab + ξ2babb + ξεabcd uc bd)

                   ξ=eτ / m    ,   σ=neeξ / (1 + ξ2 b2)      

         q= -Iaua  ,  ea≡Fab  ub ,  ba≡F*
ab  ub



        The generalized Ohm’s law The generalized Ohm’s law 
(III)(III)

• Neglecting the second and third term, in 3+1 form

•This is an hyperbolic-relaxation equation, difficult to 
solve with standard explicit numerical methods

∂t E - ▼x B  = -J = -q v - σW [E + v x B - (E∙v) v] 
∂t B + ▼x E =  0

∂t U =F(U) + R(U) / ε           ε=1/σ  relaxation time  
   

• The ideal MHD recovered when σ→∞, so E=-v xB

                ∂t B - ▼x (v xB)  =  0



      The force free approximationThe force free approximation

• From the total energy-momentum conservation  and 
Maxwell equations

   ▼aT
ab =0         ▼aT

ab
(fluid) = -▼aT

ab (em) = -Fab Ja

• if   ρ,P << B2   then    ▼aTab (fluid) <<  Fab Ja ≈ 0

               E∙J = 0    ,    q E + J x B = 0

x B    J = q ExB/B2 + (J·B) B/B2

∙  B    E∙B = 0

∂t(E∙B)=B∙▼xB - E∙▼xE - B∙J      ∂t(E∙B)=0  B∙J



  Magnetospheres of NS and BHs Magnetospheres of NS and BHs 
    with force-free  with force-free  (Komissarov, McKinney & (Komissarov, McKinney & 
Spitkovski)Spitkovski)

• Current sheet at the equator and 
instabilities when B2-E2<0
inertia effects are not neglegible 
dissipation processes restore E=B

• Let us consider B∙J=σ (E∙B)

    J = [ q ExB + σ (E∙B) B ] / B2

    ∂t(E∙B) = … - σ(E,B) (E·B)

• implies E∙B=0 when σ∞



             Force-free with ideal MHD Force-free with ideal MHD 
                              BH+disk BH+disk (McKinney & Gammie)(McKinney & Gammie)

Magnetically dominated (effectively force-free) 
  B2>>P

Matter dominated 
P>>B2

the dependence on the Ohm law
seems to diminish as ρ,P→0,
since Fab Jb = 0 



• A complete description of the different regions may be 
necessary to study magnetized fluid, but it is difficult to match 
solutions of different limits of the MHD equations

•  The equations may lead to very distorted fields, where the 
limits are not valid anymore and there are significant 
dissipative effects inside the star or in the current sheets 

• Naïve approach : evolve the full Maxwell equations with a 
generic current prescription in the three domains with no 
approximations, just changing the effective conductivity. The 
simplest example is to go from ideal   MHD (σ  ∞) to 
vacuum (σ = 0).

                                      Resistive MHDResistive MHD



∂t E - ▼x B  = -q v - σW [ E + v x B - (E∙v) v] 
∂t B + ▼x E =  0

∂t U =F(U) + R(U) / ε
Hyperbolic-relaxation  
   equation (STIFF)

     difficult to evolve with
  standard numerical methods

ε (= 1/σ)  : relaxation time

                    Resistive MHDResistive MHD



- Approaches to the problem
- The IMEX Runge-Kutta methods



∂t u = a ∂x u – u / ε∂t U =F(U) + R(U) / ε

•  CFL stability condition: Δt < Δx / a
•  Stiff stability condition with explicit method: Δt < 2ε

  if Δt~ε=1/σ~10-6    computationally impossible

     (a=0) :  un+1  – un = – Δt un / ε     un+1  = un ( 1- Δt/ε )

      amplification factor  Cn = | un+1 /un | < 1 for stability  

    Approaches to the problemApproaches to the problem
•  SOLUTION 1 : let us consider a simple case 
discretized with an explicit scheme



• SOLUTION 2 : solving the full equation implicitly

•  Let us consider an implicit method

   (a=0) :     un+1  – un = – Δt un+1  / ε      un+1  = un / ( 1+ Δt/ε )

•  Stiff stability condition with implicit method: Δt > 0
•  But… it is expensive/complicated with 
   non-vanishing F(U)

    Approaches to the problemApproaches to the problem



∂tt B - Δ B = [ -∂t B + ▼x (v x B) ] /ε
B = B0 + ε B1 + O(ε2)

∂t U =F(U) + R(U) / ε
U = U0 + ε U1 + O(ε2)

• SOLUTION 3 : the equilibrium system 
  - expand the solution around ε→0

O(ε0)  : IDEAL MHD            ∂t B0 - ▼x (v x B0) = 0
O(ε1)  :                         ∂t B1 - ▼x (v x B1) = - (∂tt B0 - Δ B0)

• hierarchy of solutions : compute B0, then B1,… but
  it is only valid close to ε→0

    Approaches to the problemApproaches to the problem



   U*   :      U* = Un + (Δt/2) R(Un) /ε  
    

   U**  :      U**  = U* + Δt F(U*) 

   Un+1 :     Un+1  = U**  + (Δt/2) R(U** )/ε 

∂t U =F(U) + R(U) / ε

• SOLUTION 4 : Strang Splitting

  Approaches to the problemApproaches to the problem

• The source step can be solved exactly with the 
analytical solution (Komissarov 2007)… but it does 
not work for strong stiff terms in the presence of 
shocks

∂t U = S(Δt/2) ¤ T(Δt) ¤ S(Δt/2) U 



• SOLUTION 5 : discontinuous Galerkin methods

  Approaches to the problemApproaches to the problem

• There are high order schemes (3-5th order) 
which can deal with the stiff terms (Dumbser & Zanotti 

2009)… but it is complicated and expensive



   U(i)  = Un + Δt Σ aij F(U(j) ) + Δt Σ aij R(U(j) ) / ε 

   Un+1  = Un + Δt Σ ωi F(U(i) ) + Δt Σ ωi R(U(i) ) / ε 

∂t U =F(U) + R(U) / ε

•  treat implicitly the stiff part and explicitly the non-stiff
   (IMplicit-EXplicit methods)

    The IMEX Runge Kutta The IMEX Runge Kutta 
methodsmethods

c1    0   0    0  ….
c2   a12  0    0  ….
…   ………………
cn   a1n   a2n   ... 0

       ω1 ω2  ... ωn     

c1   a11    0    0  ….
c2   a12   a22   0  ….
…   ………………
cn   a1n   a2n   ... ann

       ω1 ω2  ... ωn     

Explicit RK
 
                      DIRK

Butcher Tableau



• Let us consider a simple IMEX RK as an example
  

• only the stiff part has to be inverted
• high order convergence in time (usually 3 order)
• strong theoretical background (it has to work!)

    The IMEX Runge Kutta The IMEX Runge Kutta 
methodsmethods

   U1 = Un 
   U2 = Un + Δt F(U1) /2   
                 + Δt R(U2) /(2 ε) 

   Un+1  = Un + Δt F(U2) + Δt R(U2) / ε 

∂t U =F(U) + R(U) / ε

  0      0   0 
1/2   1/2  0 

         0    1

  0      0   0 
1/2     0  1/2 

         0    1

IMEX-Midpoint(1,2,2)



- Inverting explicitly the stiff part
- Numerical tests



    The relativistic MHD equationsThe relativistic MHD equations

  - the conserved variables (D,τ,Si,Ei,Bi,q) are evolved by using 
HRSC methods for conservation laws

  - the primitive variables (ρ,ε,P,vi,Ei,Bi,q) are needed to 
compute the rhs of the evolution equations

-The transformation from conserved to primitive variables is 
non-linear and has to be solved numerically in general 
      weakest link of any relativistic MHD code! 



∂t E - ▼x B  = q v - σ W [ v x B + E  - (E∙v) v] 

∂t U =F(U) + R(U) / ε

                Inverting explicitely the stiff Inverting explicitely the stiff 
partpart

F(E) = ▼x B  + q v 
R(E) = - W [v x B + E  - (E∙v) v]
    S   = - W v x B 

• only the evolution of the electric field has stiff terms    

• use standard TVD RK methods for the other fields
  and apply the IMEX only to E



                Inverting explicitly the stiff partInverting explicitly the stiff part

• compute the explicit part    

              E* = En + Δt F(E1) /2   

• invert explicitly the implicit part  

           E2 = M(v, B) [ E* + Δt S / (2 ε) ]                                      
   

• compute F(E2) and R(E2) to update En+1

Example:          U1 = Un 
                            U2 = Un + Δt F(U1) /2   
                                          + Δt R(U2) /(2 ε) 

                             Un+1  = Un + Δt F(U2) + Δt R(U2) / ε 



    The relativistic MHD equationsThe relativistic MHD equations

  - the conserved variables (D,τ,Si,Ei,Bi,q) are evolved by using 
HRSC methods for conservation laws

  - the primitive variables (ρ,ε,P,vi,Ei,Bi,q) are needed to 
compute the rhs of the evolution equations

-The transformation from conserved to primitive variables is 
non-linear and has to be solved numerically in general 
      weakest link of any relativistic MHD code! 



• Testing the high conductivity limit (ideal MHD)

By = Bo cos(x-vA t)
Bz = Bo sin(x-vA t)
vy = -vA By/Bo

vz = -vA Bz/Bo

Alfven speed vA

    

Ρ=ρ=1 , vA=1/2
conductivity σ = 106    
         

     Test 1: the Alfven wave Test 1: the Alfven wave (del Zanna (del Zanna 
2007)2007)

   Solution after one period
  ( periodic boundary conditions)



• Testing the low conductivity limit

P=cte, ρ=cte
E = v = 0
B= (0,By(x,t),0)

∂t By – (1/σ) ∂xx By =  0

By = Bo erf[(σ/(4 ξ))1/2 ]
    
          with ξ=t/x2

 Test 2: the current sheet Test 2: the current sheet (Komissarov (Komissarov 
2007)2007)

   Solution at t=10 with σ=100



• Testing the resistive MHD with shocks

Left state 
(ρL,pL,By

L)=(1,1,1/2)
Right state 
(ρR,pR,By

R)=(1/8,0.1,-1/2)

            Test 3: the shock tube Test 3: the shock tube 
problemproblem

   Solution at t=0.4



• Testing the resistive MHD with shocks in 2D

            Test 4: the cylindrical Test 4: the cylindrical 
explosionexplosion

  r<0.8   p=1, ρ = 0.01
  r>1.0   p= ρ = 0.001 

B = (0.05, 0, 0)
E = q = 0

Bx

By   Solution at t=4



• Testing the resistive MHD in toy model stars 

            Test 5: the cylindrical starTest 5: the cylindrical star

ρ = ρ0 exp[-(r/ro)2]
vφ = ρ Ω
Bz = 2 Bo[1 - (r/ro)2]
E,q from ideal MHD

σ = σ0 Dγ         D=ρW



        Extension to general relativityExtension to general relativity



• Rotating neutron star with a poloidal magnetic field

        Extension to general relativityExtension to general relativity

      t =0     after 2 periods     σ = σ0 =106             σ = σ0 ρ2



• plot r2B to show the outer region

        Extension to general relativityExtension to general relativity

      t =0     after 2 periods     σ = σ0 =106             σ = σ0 ρ2



• Rotating neutron star with a poloidal field 
disaligned 45o 

        Extension to general relativityExtension to general relativity

t=0              B                                         r2 B



• Rotating neutron star with a poloidal field 
disaligned 45o 

        Extension to general relativityExtension to general relativity

t=1.5P         B                                         r2 B



• the IMEX Runge-Kutta allows to solve the resistive-
anisotropic MHD equations in different regimes

• the IMEX

              Summary and conclusionsSummary and conclusions
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