GOING BEYOND THE IDEAL **APPROXIMATIONS :** resistive and anisotropic Ohm law

Princeton, January 15 (2010)

C. Palenzuela (CITA, Toronto)

^[] Motivation

- Different regimes of the Maxwell equations
- Resistive effects and anisotropies

The resistive MHD

- Approaches to the problem
- The IMEX Runge-Kutta methods

Application to the MHD equations

Summary and conclusions

Different regimes of the Maxwell equations

 Star or disk Dominated by the fluid
 IDEAL MHD
 Magnetosphere Dominated by the EM
 FORCE FREE

• Vacuum no sources

MAXWELL EQS.

Maxwell equations in 3 regimes

 $\partial_{t} \mathbf{E} - \mathbf{\nabla} \mathbf{x} \mathbf{B} = -\mathbf{J}$ $\partial_{t} \mathbf{B} + \mathbf{\nabla} \mathbf{x} \mathbf{E} = \mathbf{0}$ $\mathbf{\nabla} \cdot \mathbf{B} = \mathbf{0}$ $\mathbf{\nabla} \cdot \mathbf{E} = \mathbf{q}$

 $\begin{array}{c} \mathsf{DEAL} \mathsf{MHD} \\ (\mathsf{\sigma} \to \mathsf{m}) \end{array} \\ \hline \mathsf{E} = -\mathsf{v} \times \mathsf{B} \\ \partial_{\mathsf{c}} \mathsf{B} - \mathsf{v} \times \mathsf{E} = \mathsf{O} \\ \hline \mathsf{v} \cdot \mathsf{B} = \mathsf{O} \\ \hline \mathsf{E} \cdot \mathsf{D} = \mathsf{O} \end{array}$

FORCE FREE (qE +**J** x **B** = 0) $\begin{array}{c} \mathbf{E} \cdot \mathbf{B} = \mathbf{0} \\ \partial_{\mathbf{t}} \mathbf{B} - \mathbf{\nabla} \mathbf{x} \mathbf{E} = \mathbf{0} \\ \mathbf{\nabla} \cdot \mathbf{B} = \mathbf{0} \end{array}$

 $\mathbf{J} = \sigma \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right)$

 σ : conductivity

MAXWELL EQS. $(\sigma \rightarrow 0)$

 $\partial_{t} \mathbf{E} - \mathbf{\nabla} \mathbf{X} \mathbf{B} = 0$ $\partial_{t} \mathbf{B} + \mathbf{\nabla} \mathbf{X} \mathbf{E} = 0$ $\mathbf{\nabla} \cdot \mathbf{B} = 0$ $\mathbf{\nabla} \cdot \mathbf{E} = 0$

Motivation

- The ideal MHD approximation seems to describe properly many astrophysical scenarium (long list), but
 - they may lead to very distorted field lines \rightarrow reconnections
 - anisotropic effects coming from the Hall term
- The force free approximation describe well the magnetospheres of NS and BHs, but
 - they may lead to current sheets \rightarrow anomalous resistivity
- Is it possible to have different limits/approximations in the same physical problem?

(I) The relativistic MHD equations

- the description of a fluid in presence of EM fields is given by:
- 1) Conservation of mass and total energy and momentum + EOS closure relation
 - Hydrodynamic equations to describe the fluid ρ : density, u_a : 4-velocity, ϵ : internal energy, P: pressure

 $\nabla_{a} (\rho u^{a}) = 0 , \quad \nabla_{a} T^{b} = 0 , \quad P = P(\rho, \varepsilon)$ $T_{b} = [\rho(1+\varepsilon) + P]u_{a}u_{b} + Pg_{b} + [F_{a} F^{c}_{b} - (F_{a} F^{a})g_{b}/4]$

The relativistic MHD equations 2) (Extended) Maxwell equations for the EM fields $\nabla_{a} (F^{ab} + g^{ab} \Psi) = -I^{b} + \kappa n^{b} \Psi$ F^{ab} : Maxwell tensor $\nabla_a (*F^{ab} + g^{ab} \Phi) = \kappa n^a \Phi$ I^b : current 4-vector

 $V_a I^a = 0$ $I^a = n^a q + J^a$ q : charge, J^a : 3-current

3) The coupling between the fluid and the EM fields, which is given by the choice of current Jⁱ.

The relativistic MHD equations (III) - 3+1 decomposition (special relativistic)

$$\begin{array}{rcl} \partial_t \psi + \nabla \cdot E &=& q - \kappa \, \psi \,, \\ \partial_t \phi + \nabla \cdot B &=& -\kappa \, \phi \,, \\ \partial_t E - \nabla \times B + \nabla \psi &=& -J \,, \\ \partial_t B + \nabla \times E + \nabla \phi &=& 0 \,. \\ \partial_t \sigma + \nabla \cdot F \tau = 0 \,, \\ \partial_t \sigma + \nabla \cdot F \tau = 0 \,, \\ \partial_t S + \nabla \cdot F s = 0 \,, \\ \partial_t Q + \nabla \cdot J = 0 \,, \\ \partial_t D + \nabla \cdot F D = 0 \end{array}$$

$$\begin{aligned} \tau &\equiv \frac{1}{2}(E^2 + B^2) + h W^2 - p \\ S &\equiv E \times B + h W^2 v . \\ F_{\tau} &\equiv E \times B + h W^2 v , \\ \mathbf{F}_{\mathbf{S}} &\equiv -\mathbf{E}\mathbf{E} - \mathbf{B}\mathbf{B} + h W^2 v v + \left[\frac{1}{2}(E^2 + B^2) + p\right] \mathbf{g} . \end{aligned}$$

$$h = \rho(1+\epsilon) + p$$

 $W = (1-v^2)^{-1/2}$

The generalized Ohm's law (I)

• The first charge moment of the Boltzmann equation for a two-component fluid (electrons and ions) in the newtonian case

The generalized Ohm's law

• Keep not only the induction term, but also the Ohmic and the Hall ones. In the collision-time approximation, in full GR covariant form

$$\mathbf{I}_{a} = q \mathbf{u}_{a} + \sigma^{a} \mathbf{e}_{a} \qquad \sigma^{a} = \sigma(g^{a} + \xi^{2} b^{a} b^{b} + \xi \varepsilon^{aud} \mathbf{u}_{c} \mathbf{b}_{d})$$

 $\xi = e\tau / m / , \sigma = n_e e\xi / (1 + \xi^2 b^2)$

written in terms of the charge density and EM fields measured by a observer co-moving with the fluid

$$q = -I_a u^a$$
, $e_a \equiv F_a u^b$, $b_a \equiv F_a u^b$

The generalized Ohm's law

• Neglecting the second and third term, in 3+1 form

 $\partial_{t} \mathbf{E} - \mathbf{\nabla} \mathbf{x} \mathbf{B} = -\mathbf{J} = -\mathbf{q} \mathbf{v} - \sigma \mathbf{W} [\mathbf{E} + \mathbf{v} \mathbf{x} \mathbf{B} - (\mathbf{E} \cdot \mathbf{v}) \mathbf{v}]$ $\partial_{t} \mathbf{B} + \mathbf{\nabla} \mathbf{x} \mathbf{E} = 0$

•This is an hyperbolic-relaxation equation, difficult to solve with standard explicit numerical methods

 $\partial_t \mathbf{U} = F(\mathbf{U}) + R(\mathbf{U}) / \varepsilon$ $\varepsilon = 1/\sigma$ relaxation time

• The ideal MHD recovered when $\sigma \rightarrow \infty$, so E=-v xB $\partial_t \mathbf{B} - \mathbf{\nabla} \mathbf{x} (\mathbf{v} \mathbf{x} \mathbf{B}) = 0$

The force free approximation

• From the total energy-momentum conservation and Maxwell equations

$$\mathbf{\nabla}_{\mathbf{a}} \mathbf{T}^{\mathbf{b}} = \mathbf{0} \quad \mathbf{\rightarrow} \quad \mathbf{\nabla}_{\mathbf{a}} \mathbf{T}^{\mathbf{b}}_{(\text{fluid})} = -\mathbf{\nabla}_{\mathbf{a}} \mathbf{T}^{\mathbf{b}}_{(\text{em})} = -\mathbf{F}^{\mathbf{b}} \mathbf{J}_{\mathbf{a}}$$

• if $\rho, P \ll B^2$ then $\nabla_a T^{ab}(\text{fluid}) \ll F^{ab} J_a \approx 0$

 $\mathbf{E} \cdot \mathbf{J} = 0 , \quad \mathbf{q} \ \mathbf{E} + \mathbf{J} \ge \mathbf{B} = 0$ $\ge \mathbf{B} \Rightarrow \mathbf{J} = \mathbf{q} \ \mathbf{E} \ge \mathbf{B} / \mathbf{B}^2 + (\mathbf{J} \cdot \mathbf{B}) \ \mathbf{B} / \mathbf{B}^2$ $\ge \mathbf{B} \Rightarrow \mathbf{E} \cdot \mathbf{B} = 0$

 $\partial_t (\mathbf{E} \cdot \mathbf{B}) = \mathbf{B} \cdot \nabla \mathbf{X} \mathbf{B} - \mathbf{E} \cdot \nabla \mathbf{X} \mathbf{E} - \mathbf{B} \cdot \mathbf{J}$ $\partial_t (\mathbf{E} \cdot \mathbf{B}) = 0 \rightarrow \mathbf{B} \cdot \mathbf{J}$

Magnetospheres of NS and BHs with force-free (Komissarov, McKinney & Spitkovski)

 Current sheet at the equator and instabilities when B²-E²<0
 → inertia effects are not neglegible
 → dissipation processes restore E=B

• Let us consider $\mathbf{B} \cdot \mathbf{J} = \sigma (\mathbf{E} \cdot \mathbf{B})$

 $\mathbf{J} = [\mathbf{q} \mathbf{E} \mathbf{x} \mathbf{B} + \sigma (\mathbf{E} \cdot \mathbf{B}) \mathbf{B}] / \mathbf{B}^2$ $\partial_t (\mathbf{E} \cdot \mathbf{B}) = \dots - \sigma(\mathbf{E}, \mathbf{B}) (\mathbf{E} \cdot \mathbf{B})$

• implies $E \cdot B = 0$ when $\sigma \rightarrow \infty$

Force-free with ideal MHD BH+disk (McKinney & Gammie)

 $B^2 > P$

the dependence on the Ohm law seems to diminish as $\rho, P \rightarrow 0$, since $F^{ab}J_{b} = 0$

Resistive MHD

• A complete description of the different regions may be necessary to study magnetized fluid, but it is difficult to match solutions of different limits of the MHD equations

• The equations may lead to very distorted fields, where the limits are not valid anymore and there are significant dissipative effects inside the star or in the current sheets

• Naïve approach : evolve the full Maxwell equations with a generic current prescription in the three domains with no approximations, just changing the effective conductivity. The simplest example is to go from ideal MHD ($\sigma \rightarrow \infty$) to vacuum ($\sigma = 0$).

Resistive MHD

$\partial_t \mathbf{E} - \mathbf{\nabla} \mathbf{x} \mathbf{B} = -\mathbf{q} \mathbf{v} - \sigma \mathbf{W} [\mathbf{E} + \mathbf{v} \mathbf{x} \mathbf{B} - (\mathbf{E} \cdot \mathbf{v}) \mathbf{v}]$ $\partial_t \mathbf{B} + \mathbf{\nabla} \mathbf{x} \mathbf{E} = 0$

 $\partial_t \mathbf{U} = F(\mathbf{U}) + R(\mathbf{U}) / \varepsilon$

 ϵ (= 1/ σ) : relaxation time

Hyperbolic-relaxation equation (STIFF)

difficult to evolve with standard numerical methods

Dealing with the stiff equation

Approaches to the problem
The IMEX Runge-Kutta methods

• SOLUTION 1 : let us consider a simple case discretized with an explicit scheme

$$\partial_t \mathbf{U} = F(\mathbf{U}) + R(\mathbf{U}) / \varepsilon$$
 $\partial_t \mathbf{u} = \mathbf{a} \partial_x \mathbf{u} - \mathbf{u} / \varepsilon$

$$(a=0): u^{n+1} - u^n = -\Delta t u^n / \epsilon \rightarrow u^{n+1} = u^n (1 - \Delta t / \epsilon)$$

amplification factor $C^n = |u^{nH}/u^n| < 1$ for stability

- CFL stability condition: $\Delta t < \Delta x / a$
- Stiff stability condition with explicit method: $\Delta t < 2\epsilon$

if $\Delta t \sim \epsilon = 1/\sigma \sim 10^6 \rightarrow \text{computationally impossible}$

- SOLUTION 2 : solving the full equation implicitly
- Let us consider an implicit method

 $(a=0): \quad u^{n+1} - u^n = -\Delta t \ u^{n+1} \ / \varepsilon \rightarrow u^{n+1} = u^n \ / \ (1 + \Delta t / \varepsilon)$

- Stiff stability condition with implicit method: $\Delta t > 0$
- But... it is expensive/complicated with non-vanishing F(U)

• SOLUTION 3 : the equilibrium system - expand the solution around $\epsilon \rightarrow 0$

 $\begin{array}{c} \partial_t \mathbf{U} = \mathbf{F}(\mathbf{U}) + \mathbf{R}(\mathbf{U}) / \varepsilon \\ \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{O}(\varepsilon^2) \end{array} \xrightarrow{} \left\{ \begin{array}{c} \partial_t \mathbf{B} - \Delta \mathbf{B} = \begin{bmatrix} -\partial_t \mathbf{B} + \mathbf{\nabla} \mathbf{x} (\mathbf{v} \mathbf{x} \mathbf{B}) \end{bmatrix} / \varepsilon \\ \mathbf{B} = \mathbf{B}_0 + \varepsilon \mathbf{B}_1 + \mathbf{O}(\varepsilon^2) \end{array} \right\} \\ \left\{ \begin{array}{c} \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{O}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{O}(\varepsilon^2) \end{array} \right\} \\ \left\{ \begin{array}{c} \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{O}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{O}(\varepsilon^2) \end{array} \right\} \\ \left\{ \begin{array}{c} \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{O}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{O}(\varepsilon^2) \end{array} \right\} \\ \left\{ \begin{array}{c} \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \end{array} \right\} \\ \left\{ \begin{array}{c} \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \end{array} \right\} \\ \left\{ \begin{array}{c} \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \end{array} \right\} \\ \left\{ \begin{array}{c} \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \end{array} \right\} \\ \left\{ \begin{array}{c} \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \end{array} \right\} \\ \left\{ \begin{array}{c} \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \end{array} \right\} \\ \left\{ \begin{array}{c} \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \end{array} \right\} \\ \left\{ \begin{array}{c} \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \end{array} \right\} \\ \left\{ \begin{array}{c} \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \end{array} \right\} \\ \left\{ \begin{array}{c} \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \end{array} \right\} \\ \left\{ \begin{array}{c} \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \varepsilon \mathbf{U}_1 + \mathbf{U}(\varepsilon^2) \end{array} \right\} \\ \left\{ \begin{array}{c} \mathbf{U} = \mathbf{U}_0 + \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \mathbf{U}(\varepsilon^2) \end{array} \right\} \\ \left\{ \begin{array}{c} \mathbf{U} = \mathbf{U}_0 + \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \mathbf{U}(\varepsilon^2) \end{array} \right\} \\ \left\{ \begin{array}{c} \mathbf{U} = \mathbf{U}_0 + \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}_0 + \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}(\varepsilon^2) + \mathbf{U}(\varepsilon^2) + \mathbf{U}(\varepsilon^2) \\ \mathbf{U} = \mathbf{U}(\varepsilon^2) + \mathbf{U}(\varepsilon^2) \\$

• hierarchy of solutions : compute B_0 , then B_1 ,... but it is only valid close to $\epsilon \rightarrow 0$

SOLUTION 4 : Strang Splitting

 $\partial_t \mathbf{U} = F(\mathbf{U}) + R(\mathbf{U}) / \varepsilon$ $\partial_t \mathbf{U} = S(\Delta t/2) \approx T(\Delta t) \approx S(\Delta t/2) \mathbf{U}$

 U^* : $U^* = U^n + (\Delta t/2) R(U^n) / \epsilon$

$$U^{**}$$
 : $U^{**} = U^{*} + \Delta t F(U^{*})$

 U^{n+1} : $U^{n+1} = U^{**} + (\Delta t/2) R(U^{**})/\epsilon$

• The source step can be solved exactly with the analytical solution (Komissarov 2007)... but it does not work for strong stiff terms in the presence of shocks

• SOLUTION 5 : discontinuous Galerkin methods

• There are high order schemes (3-5th order) which can deal with the stiff terms (Dumbser & Zanotti 2009)... but it is complicated and expensive

The IMEX Runge Kutta methods

 treat implicitly the stiff part and explicitly the non-stiff (IMplicit-EXplicit methods)

 $\partial_t \mathbf{U} = F(\mathbf{U}) + R(\mathbf{U}) / \varepsilon$

 $\overline{U^{(i)}} = \overline{U^n} + \Delta t \Sigma \underline{a}_{ij} F(U^{(j)}) + \Delta t \Sigma a_{ij} R(\overline{U^{(j)}}) / \varepsilon$

 $\overline{U^{n+1}} = \overline{U^n} + \Delta t \Sigma \underline{\omega}_i F(U^{(i)}) + \Delta t \Sigma \omega_i R(U^{(i)}) / \epsilon$

The IMEX Runge Kutta methods

• Let us consider a simple IMEX RK as an example

 $\partial_t \mathbf{U} = F(\mathbf{U}) + R(\mathbf{U}) / \varepsilon$

 $\begin{aligned} \mathbf{U}^{1} &= \mathbf{U}^{n} \\ \mathbf{U}^{2} &= \mathbf{U}^{n} + \Delta t \ \mathbf{F}(\mathbf{U}^{1}) \ /2 \\ &+ \Delta t \ \mathbf{R}(\mathbf{U}^{2}) \ /(2 \ \varepsilon) \end{aligned}$

IMEX-Midpoint(1,2,2)						
0 1/2	0 1/2	0 0		0 1/2	0 0	0 1/2
	0	1			0	1

 $U^{n+1} = U^n + \Delta t F(U^2) + \Delta t R(U^2) / \epsilon$

- only the stiff part has to be inverted
- high order convergence in time (usually 3 order)
- strong theoretical background (it has to work!)

Application to the Maxwell equations

Inverting explicitly the stiff part
Numerical tests

The relativistic MHD equations

- the conserved variables (D,τ,S^i,E^i,B^i,q) are evolved by using HRSC methods for conservation laws

- the primitive variables ($\rho, \varepsilon, P, v^i, E^i, B^i, q$) are needed to compute the rhs of the evolution equations

The transformation from conserved to primitive variables is non-linear and has to be solved numerically in general
 → weakest link of any relativistic MHD code!

Inverting explicitely the stiff

part

only the evolution of the electric field has stiff terms

 $\partial_{\mathbf{t}} \mathbf{E} - \mathbf{\nabla} \mathbf{x} \mathbf{B} = q \mathbf{v} - \sigma \mathbf{W} [\mathbf{v} \mathbf{x} \mathbf{B} + \mathbf{E} - (\mathbf{E} \cdot \mathbf{v}) \mathbf{v}]$

 use standard TVD RK methods for the other fields and apply the IMEX only to E

 $\partial_{\mathbf{t}} \mathbf{U} = F(\mathbf{U}) + R(\mathbf{U}) / \varepsilon \xrightarrow{F(\mathbf{E})} R(\mathbf{E}) = -W [\mathbf{v} \times \mathbf{B} + \mathbf{E} - (\mathbf{E} \cdot \mathbf{v}) \mathbf{v}]$ $S = -W [\mathbf{v} \times \mathbf{B}]$

Inverting explicitly the stiff part

- Example: $\mathbf{U}^1 = \mathbf{U}^n$ $\mathbf{U}^2 = \mathbf{U}^n + \Delta t F(\mathbf{U}^1) / 2$ $+ \Delta t R(\mathbf{U}^2) / (2 \epsilon)$ $\mathbf{U}^{n+1} = \mathbf{U}^n + \Delta t F(\mathbf{U}^2) + \Delta t R(\mathbf{U}^2) / \epsilon$
- compute the explicit part

 $\mathbf{E}^* = \mathbf{E}^n + \Delta t F(\mathbf{E}^1) / 2$

- invert explicitly the implicit part $E^2 = M(v, B) [E^* + \Delta t S / (2 \epsilon)]$
- compute $F(E^2)$ and $R(E^2)$ to update E^{nH}

The relativistic MHD equations

- the conserved variables (D,τ,S^i,E^i,B^i,q) are evolved by using HRSC methods for conservation laws

- the primitive variables ($\rho, \varepsilon, P, v^i, E^i, B^i, q$) are needed to compute the rhs of the evolution equations

The transformation from conserved to primitive variables is non-linear and has to be solved numerically in general
 → weakest link of any relativistic MHD code!

Test 1: the Alfven wave (del Zanna 2007)

Testing the high co

 $B_{y} = B_{o} \cos(x - v_{A} t)$ $B_{z} = B_{o} \sin(x - v_{A} t)$ $v_{y} = -v_{A} B_{y}/B_{o}$ $v_{z} = -v_{A} B_{z}/B_{o}$

Alfven speed v_A

 $P=\rho=1$, $v_A=1/2$ conductivity $\sigma = 10^6$

Solution after one period (periodic boundary conditions)

Test 2: the current sheet (Komissarov 2007)

• Testing the low conduction

P=cte, ρ =cte E = v = 0 B=(0,B_y(x,t),0)

$$\partial_{t} \mathbf{B}_{y} - (1/\sigma) \partial_{x} \mathbf{B}_{y} = \mathbf{0}$$

 $B_y = B_o erf[(\sigma/(4 \xi))^{1/2}]$

with $\xi = t/x^2$

Solution at t=10 with σ =100

Test 3: the shock tube problem

• Testing the resistive MHD

Left state $(\rho^{L}, p^{L}, B_{y}^{-L}) = (1, 1, 1/2)$ Right state $(\rho^{R}, p^{R}, B_{y}^{-R}) = (1/8, 0.1, -1/2)$

Solution at t=0.4

Test 4: the cylindrical explosion

• Testing the resistive MHD with shocks in 2D

r<0.8 p=1, $\rho = 0.01$ r>1.0 p= $\rho = 0.001$

$$B = (0.05, 0, 0)$$

E = q = 0

Solution at t=4

Test 5: the cylindrical star

• Testing the resistive MHD in toy model stars

 $\partial_t (\sqrt{\gamma} B^i) + \partial_k [-\beta^k \sqrt{\gamma} B^i + \alpha \epsilon^{ikj} \sqrt{\gamma} E_j] =$ $-\sqrt{\gamma} B^k(\partial_k \beta^i) - \alpha \sqrt{\gamma} \gamma^{ij} \partial_j \phi$ $\partial_t (\sqrt{\gamma} E^i) + \partial_k [-\beta^k \sqrt{\gamma} E^i - \alpha \epsilon^{ikj} \sqrt{\gamma} B_j] =$ $-\sqrt{\gamma}E^{k}(\partial_{k}\beta^{i}) - \alpha\sqrt{\gamma}\gamma^{ij}\partial_{j}\Psi - 4\pi\alpha\sqrt{\gamma}J^{i}$ $\partial_t \phi + \partial_k [-\beta^k \phi + \alpha B^k] =$ $-\phi (\partial_k \beta^k) + B^k (\partial_k \alpha) - \alpha \Gamma^i_{ki} B^k - \alpha \kappa \phi$ $\partial_t \Psi + \partial_k [-\beta^k \Psi + \alpha E^k] =$ $-\Psi\left(\partial_k\beta^k\right) + E^k(\partial_k\alpha) - \alpha\Gamma^i_{ki}E^k + 4\pi\alpha q - \alpha\kappa\Psi$ $\partial_t (\sqrt{\gamma} q) + \partial_k [-\beta^k \sqrt{\gamma} q + \alpha \sqrt{\gamma} J^k] = 0$ $\partial_t (\sqrt{\gamma} D) + \partial_k [\sqrt{\gamma} D (\alpha v^k - \beta^k)] = 0$ $\partial_t (\sqrt{\gamma} \tau) + \partial_k [\sqrt{\gamma} (\alpha S^k - \beta^k \tau)] = \sqrt{\gamma} [\alpha S^{ij} K_{ij} - S^j \partial_j \alpha]$ $\partial_t (\sqrt{\gamma} S_i) + \partial_k [\sqrt{\gamma} (\alpha S^k{}_i - \beta^k S_i)] = \sqrt{\gamma} [\alpha \Gamma^j_{ik} S^k{}_j + S_j \partial_i \beta^j - \tau \partial_i \alpha]$

Rotating neutron star with a poloidal magnetic field

 $\sigma = \sigma_0 \rho^2$

t =0 after 2 periods $\sigma = \sigma_0 = 10^6$

plot r²B to show the outer region

 $\sigma = \sigma_0 \rho^2$

t =0 after 2 periods $\sigma = \sigma_0 = 10^6$

 Rotating neutron star with a poloidal field disaligned 45°

 Rotating neutron star with a poloidal field disaligned 45°

 $r^2 B$

t=1.5P

Β

Summary and conclusions

• the IMEX Runge-Kutta allows to solve the resistiveanisotropic MHD equations in different regimes

• the IMEX