

Special vs. General Relativity

- · Applies only to constant motion
- Constant speed of light (in vacuum)
- Same laws in all inertial frames of ref.
- Observers at same speed can share frame
- Unites space w/ time in flat space

ion lae, publishing as Addia

- · Allows for accelerated motion
- Ditto..constant speed of light
- Same laws in local frames
- Observers must be near each other (curvature)
- · Describes curved spacetime

More on General Relativity

- Time runs slower where curvature deeper
- Energy/matter curves spacetime
- Gravity/curvature bends light: grav. lenses
- Acceleration equivalent to gravity
- Allows for black holes
- Allows for different shapes for the universe
- · Predicts gravitational waves
- Fixes Newtonian gravity:
 - Time dependent
 - No action at a distance

General relativity is based on the *equivalence principle* that

- states Nothing can travel faster than the speed of light
- The effects of gravity are the same as the effects of acceleration
- The laws of physics are equivalent for all observers
- None of the above

General relativity is based on the *equivalence principle* that

- Nothing can travel faster than the speed of light
- The effects of gravity are the same as the effects of acceleration
- The laws of physics are equivalent for all observers
- None of the above

If you are in a spaceship that is accelerating, and don't look

out

- You can "feel" that you are accelerating
- You could not tell by performing experiments inside your spaceship
- You will feel as if you have weight
- All of the above
- #1 and #3

If you are in a spaceship that is accelerating, and don't look out

- You can "feel" that you are accelerating
- You could not tell by performing experiments inside your spaceship
- You will feel as if you have weight
- All of the above
- #1 and #3

If you follow the straightest possible path through a spacetime diagram

- You must be traveling at the speed of light
- You get from one place to another as fast as possible
- You are in "free fall" you do not feel any weight or acceleration
- None of the above

If you follow the straightest possible path through a spacetime diagram

- You must be traveling at the speed of light
- You get from one place to another as fast as possible
- You are in "free fall" you do not feel any weight or acceleration
- None of the above

(1) You look at the bright star Vega that is 25 light years away. You

- The way it appears today
- The way it looked 25 years ago
- Neither of the above

(1) You look at the bright star Vega that is 25 light years away. You

- The way it appears today
- The way it looked 25 years ago
- Neither of the above

Has any evidence been found that the predictions of general relativity are

true?

- We've seen gravitational lensing caused by the sun, stars, and galaxies
- The spectrum of white dwarf stars shows a redshift due to time slowing down
- The perihelion of Mercury's orbit precesses
- All of the above
- All except #2

tion les, sublishing as Add

Has any evidence been found that the predictions of general relativity are true?

- We've seen gravitational lensing caused by the sun, stars, and galaxies
- The spectrum of white dwarf stars shows a redshift due to time slowing down
- The perihelion of Mercury's orbit precesses
- All of the above
- All except #2

Are there such things as "gravitational waves"?

- Yes, they are like electromagnetic waves except made by moving masses rather than moving charges.
- They are ripples in spacetime
- Some close binary stars appear to radiate them
- All of the above
- All except #1

Are there such things as "gravitational waves"?

- Yes, they are like electromagnetic waves except made by moving masses rather than moving charges.
- They are ripples in spacetime
- Some close binary stars appear to radiate them
- All of the above
- All except #1

Our Sun

- Why does the Sun shine?
- Why isn't the Sun changing (significantly)...getting bigger or smaller?

15.1 Properties of Stars

- Our goals for learning
- How do we measure stellar luminosities?
- How do we measure stellar temperatures?
- How do we measure stellar masses?

Thought Question

These two stars have about the same luminosity -- which one appears brighter?

A. Alpha CentauriB. The Sun

lishing os Add

Thought Question

These two stars have about the same luminosity -- which one appears brighter?

A. Alpha Centauri

B. The Sun

The relationship between apparent brightness and luminosity depends on distance:

Brightness = $\frac{\text{Luminosity}}{4\pi \text{ (distance)}^2}$

We can determine a star's luminosity if we can measure its distance and apparent brightness:

Luminosity = 4π (distance)² x (Brightness)

Thought Question

How would the apparent brightness of Alpha Centauri change if it were three times farther away?

- A. It would be only 1/3 as bright
- B. It would be only 1/6 as bright
- C. It would be only 1/9 as bright

hine as Add

D. It would be three times brighter

Thought Question How would the apparent brightness of Alpha Centauri change if it were three times farther away? A. It would be only 1/3 as bright B. It would be only 1/6 as bright C. It would be only 1/9 as bright D. It would be three times brighter

Parallax is the apparent shift in position of a nearby object against a background of more distant objects

tion hee, put

Apparent positions of nearest stars shift by about an arcsecond as Earth orbits Sun

Pioneers of Stellar Classification

Annie Jump Cannon and the "calculators" at Harvard laid the foundation of modern stellar classification

What have we learned?

- How do we measure stellar luminosities?
 - If we measure a star's apparent brightness and distance, we can compute its luminosity with the inverse square law for light
 - Parallax tells us distances to the nearest stars
- How do we measure stellar temperatures?

hine as Ad

 A star's color and spectral type both reflect its temperature

What have we learned?

• How do we measure stellar masses?

 Newton's version of Kepler's third law tells us the total mass of a binary system, if we can measure the orbital period (*p*) and average orbital separation of the system (*a*)

15.2 Patterns among Stars

• Our goals for learning

etion lac, publishing as Add

- What is a Hertzsprung-Russell diagram?
- What is the significance of the main sequence?
- What are giants, supergiants, and white dwarfs?
- Why do the properties of some stars vary?

What is a Hertzsprung-Russell diagram?

V - main sequence

Examples: Sun - G2 V Sirius - A1 V Proxima Centauri - M5.5 V Betelgeuse - M2 I

Main-sequence stars are fusing hydrogen into helium in their cores like the Sun

Luminous mainsequence stars are hot (blue)

Less luminous ones are cooler (yellow or red)

Mass measurements of main-sequence stars show that the hot, blue stars are much more massive than the cool, red ones

The mass of a normal, hydrogenburning star determines its luminosity and spectral type!

Stellar Properties Review Luminosity: from brightness and distance

10⁻⁴ L_{Sun} - 10⁶ L_{Sun}

Temperature: from color and spectral type

3,000 K - 50,000 K

Mass: from period (p) and average separation (a) of binary-star orbit

0.08 M_{Sun} - 100 M_{Sun}

Stellar Properties Review Luminosity: from brightness and distance (0.08 M_{Sun}) 10⁻⁴ L_{Sun} - 10⁶ L_{Sun} (100 M_{Sun})

Temperature: from color and spectral type

 $(0.08~M_{Sun})~$ 3,000 K - 50,000 K $(100~M_{Sun})$

Mass: from period (p) and average separation (a) of binary-star orbit

0.08 M_{Sun} - 100 M_{Sun}

Mass & Lifetime

Sun's life expectancy: 10 billion years

- Stellar properties depend on both mass and age: those that have finished fusing H to He in their cores are no longer on the main sequence
- All stars become larger and redder after exhausting their core hydrogen: giants and supergiants

ion Inc, publishing as Addison-Wesley

• Most stars end up small and white after fusion has ceased: white dwarfs

What have we learned?

- What is a Hertzsprung-Russell diagram?
 - An H-R diagram plots stellar luminosity of stars versus surface temperature (or color or spectral type)
- What is the significance of the main sequence?
 - Normal stars that fuse H to He in their cores fall on the main sequence of an H-R diagram
 - A star's mass determines its position along the main sequence (high-mass: luminous and blue; low-mass: faint and red)

What have we learned?

- What are giants, supergiants, and white dwarfs?
 - All stars become larger and redder after core hydrogen burning is exhausted: giants and supergiants
 - Most stars end up as tiny white dwarfs after fusion has ceased
- Why do the properties of some stars vary?

as as Addison-W

 Some stars fail to achieve balance between power generated in the core and power radiated from the surface

15.3 Star Clusters

• Our goals for learning

ana na Addinon-Wasia

- What are the two types of star clusters?
- How do we measure the age of a star cluster?

What are the two types of star clusters?

Globular cluster: Up to a million or more stars in a dense ball bound together by gravity

What have we learned?

- What are the two types of star clusters?
 - Open clusters are loosely packed and contain up to a few thousand stars
 - Globular clusters are densely packed and contain hundreds of thousands of stars
- How do we measure the age of a star cluster?
 - A star cluster's age roughly equals the life expectancy of its most massive stars still on the main sequence

Lab

- Not just about taking data, and calculating
- Need to be able to **critically** analyze data!
- It's hard!

scation Inc, publishing as Addison-

Three big issues to conquer

1. Uncertainty

son Education Inc, publishing as Addison-We

- Precision of a measurement
- All measurements have uncertainty
- 2. Error

estion Inc. publishing as Addis

- Inaccuracy of a measurement
- 3. Drawing conclusions