

Agenda

- Announce:
 - Online Quizzes
 - Observations
 - Extra Credit Lecture
- Distinguishing Crackpot/Genuine Science
- Review of Special Relativity
- · General Relativity

Distinguishing Crackpots

- · Investigates failure of accepted theory
- · Explains math used · Tries to make specific prediction of testable effects
- May use esoteric jargon but provides references for where to learn about it
- · Trashes all of "accepted theory" · Avoids math or uses
- strange terminology w/ little explanation
- Tends to assert that theory • explains all current data...no need to test
- Uses strange wording with no definitions...imprecise

Review of Special Relativity

- Two central tenets:
 - Speed of light
 - Equivalent laws in inertial frames
- Implications:
 - Time dilation
 - Length contraction
 Electric field⇔Magnetic field
- · Radical viewpoint, but experiments completely support (one of most tested theories):
 - Muon lifetimes hitting atmosphere
 - Flying atomic clocks
 - ALL of modern physics/chemistry

S3.1 Einstein's Revolution

- Our goals for learning
- What are the major ideas of general relativity?
- Is all motion relative?

Spacetime

- Special relativity showed that space and time are not absolute
- Instead they are inextricably linked in a four-dimensional combination called **spacetime**

Curved Space

- Travelers going in opposite directions in straight lines will eventually meet
- Because they meet, the travelers know Earth's surface cannot be flat—it must be curved

Curved Spacetime • Gravity two spacetime

- Gravity can cause two space probes moving around Earth to meet
- General relativity says this happens because spacetime is curved

Key Ideas of General Relativity

- Gravity arises from distortions of spacetime
- Time runs slowly in gravitational fields
- Black holes can exist in spacetime
- The universe may have no boundaries and no center but may still have finite volume
- Rapid changes in the motion of large masses can cause *gravitational waves*

Is all motion relative?

Relativity and Acceleration

- Our thought experiments about special relativity involved spaceships moving at constant velocity
- Is all motion still relative when acceleration and gravity enter the picture?

Acceleration and Relative Motion

Gravity and Relative Motion

- Someone who feels a force may be hovering in a gravitational field
- · Someone who feels weightless may be in free-fall

What have we learned?

- What are the major ideas of general relativity?
 - Gravity arises from curvature of spacetime
- Gravity slows passage of time
- Black holes can exist; universe may be finite
- Is all motion relative?
 - Yes, because the effects of gravity are exactly equivalent to the effects of gravity (Einstein's *Equivalence Principle*)

S3.2 Understanding Spacetime

- Our goals for learning
- What is spacetime?
- What is curved spacetime?

- But the book looks different in two-dimensional
- pictures of the book taken from different perspectivesSimilarly, space and time look different from
- different perspectives in spacetime

Perspectives in Spacetime

- Observers in relative motion do not share the same definitions of *x*, *y*, *z*, and *t*, taken individually
 - Space is different for different observers. Time is different for different observers. Spacetime is the same for everyone.

Geometry of the Universe

- Universe may be either flat, spherical, or saddle-shaped depending on how much matter (and energy) it contains
 - Flat and saddle-shaped universe are infinite in extent
 - Spherical universe is finite in extent
 - No center and no edge to the universe is necessary in any of these cases

"Straight" lines in Spacetime

- According to Equivalence Principle:
 - If you are floating freely, then your worldline is following the *straightest possible path* through spacetime
 - If you feel weight, then you are not on the straightest possible path

What have we learned?

• What is spacetime?

- Spacetime is the four-dimensional combination of space and time that forms the "fabric" of our universe
- What is curved spacetime?
 - Spacetime can be curved just as a piece of paper can be curved
 - The three possible geometries for spacetime are flat, spherical, and saddle-shaped
 - The rules of geometry differ among these cases

S3.3 A New View of Gravity

- Our goals for learning
- What is gravity?
- What is a black hole?
- How does gravity affect time?

Gravity, Newton, and Einstein

- Newton viewed gravity as a mysterious "action at a distance"
- Einstein removed the mystery by showing that what we perceive as gravity arises from curvature of spacetime

Rubber Sheet Analogy

– Circles all have circumference $2\pi r$

- Circles near Sun have circumference $< 2\pi r$

Limitations of the Analogy

- Masses do not rest "upon" the spacetime like they rest on a rubber sheet
- Rubber sheet shows only two dimensions of space

Time in an Accelerating Spaceship

- Light pulse travel more quickly from front to back of an accelerating spaceship than in other direction
- Everyone on ship agrees that time runs faster in front than in back

Special Topic: The Twin Paradox

- If one twin takes a high-speed round trip to a distant star, that twin will have aged less than the other that remains on Earth
- But doesn't time on Earth appear to run slower from the perspective of the twin on the high-speed trip?
- Solution: The twin on the trip is accelerating

What have we learned?

- What is gravity?
 - Gravity arises from curvature of spacetime
- What is a black hole?
- Spacetime becomes very highly curved around a large mass compressed into a tiny space
- Around a black hole, spacetime becomes so
- curved that nothing can escape
- How does gravity affect time?
 - Time runs more slowly at lower altitudes in a gravitational field

S3.4 Testing General Relativity

- Our goals for learning
- How do we test the predictions of the general theory of relativity?
- What are gravitational waves?

How do we test the predictions of general relativity?

Precession of Mercury

- The major axis of Mercury's elliptical orbit precesses with time at a rate that disagrees with Newton's laws
- General relativity
 precisely accounts for
 Mercury's precession

Gravitational Lensing

- Gravitational lensing can distort the images of objects
- Lensing can even make one object appear to be at two or more points in the sky

Gravitational Lensing• Gravity of
foreground galaxy
(center) bends light
from an object almost
directly behind it• Four images of that
object appear in the
sky (Einstein's
Cross)

Gravitational Lensing

• Gravity of foreground galaxy (center) bends light from an object directly behind it

• A ring of light from the background object appears in the sky (Einstein Ring)

Gravitational Time Dilation Passage of time has been measured at different altitudes has been precisely measured Time indeed passes more slowly at lower altitudes in precise agreement with general relativity

Gravitational Waves

- General relativity predicts that movements of a massive object can produce gravitational waves just as movements of a charged particle produce light waves
- Gravitational waves have not yet been directly detected

S3.5 Hyperspace, Wormholes, and Warp Drive

- Our goals for learning
- Where does science end and science fiction begin?

Are Wormholes Really Possible?

- Wormholes are not explicitly prohibited by known laws of physics but there is no known way to make one
- If wormholes exist, then they can be used for time travel
- Time travel leads to paradoxes that some scientists believe should rule out the possibility of wormholes

What have we learned?

- Where does science end and science fiction begin?
 - No known laws of physics prohibit the shortcuts through spacetime known as wormholes
 - However, wormholes would enable time travel, leading to paradoxes that some believe rule out the possibility of wormholes