

Agenda

- Announce:
 - Read up to Chs. 11-14 (and Epilogue)Test one week
- · Second Part of Movie
- Story so far
- Ch. 8
- Ch. 9
- Ch. 10

Movie Part II

- Energy increases w/ square of velocity
- 1905—miraculous year for physics Einstein published papers:
 - Establishing existence of atoms
 - Establishing existence of light quanta (photons)
 - Laying out special theory of relativity
 - E=mc^2
- Far reaching consequences
 - Meitner & Hahn bombard big elements with neutrons to make
 - bigger ones...end up with smaller ones - Sum of two smaller masses less than that of big mass atom
 - First to convert mass to energy

Story So Far

- 1915—General Theory of Relativity to handle acceleration
 ends up a new theory of gravity
- 1916—Schwarzschild solution
- 1930s—Not clear if star would stop collapsing before BH formation
- 1940s—Becoming clear that white dwarfs and neutron stars couldn't stop massive stars
- WWII
- 1950s—Properties of BHs start being found
- 1965-1975—Golden Age of Relativity/BHs
- Modern day-searching for direct evidence of BHs

Ch. 8—The Search for BHs

- · Gravitational lensing
 - Idea: Look for distortions to background images

Ch. 8—The Search for BHs

- Gravitational lensing
 - Idea: Look for distortions to background images
 - Problem: Too small an effect, requires great alignment

Ch. 8—The Search for BHs

- Gravitational lensing
 - Idea: Look for distortions to background images
 - Problem: Too small an effect, requires great alignment
- · Find binaries w/ one visible star

Ch. 8—The Search for BHs

- Gravitational lensing
 - Idea: Look for distortions to background images
 - Problem: Too small an effect, requires great alignment
- · Find binaries w/ one visible star
 - Idea: Look for doppler shift of visible star and measure mass of companion

Ch. 8—The Search for BHs

- · Gravitational lensing
 - Idea: Look for distortions to background images
 - Problem: Too small an effect, requires great alignment
- · Find binaries w/ one visible star
 - Idea: Look for doppler shift of visible star and measure mass of companion
 - Problem: (i) hard to weight because of alignment and uncertainty in mass of visible star (ii) dark partner could be some other type of dark/dim star

Ch. 8—The Search for BHs

- Gravitational lensing
 - Idea: Look for distortions to background imagesProblem: Too small an effect, requires great
 - alignment
- Find binaries w/ one visible star
 - Idea: Look for doppler shift of visible star and measure mass of companion
- Problem: (i) hard to weight because of alignment and uncertainty in mass of visible star (ii) dark partner could be some other type of dark/dim star
- Look for shock front effects in gas clouds

Ch. 8—The Search for BHs

- Gravitational lensing
 - Idea: Look for distortions to background images
 - Problem: Too small an effect, requires great alignment
- · Find binaries w/ one visible star
 - Idea: Look for doppler shift of visible star and measure mass of companion
 - Problem: (i) hard to weight because of alignment and uncertainty in mass of visible star (ii) dark partner could be some other type of dark/dim star
- · Look for shock front effects in gas clouds
 - Idea: A BH passing through hot gas will produce shock fronts in its wake

X-Ray Binaries

- X-Rays:
 - Extremely energetic electromagnetic radiation...generally associated w/ very energetic events
 - Tends to go through things...hence hard to focus
 - Blocked by atmosphere
- X-Ray detectors associated with arms race:
 - Launched on rockets
 - Used to study nuclear testing (both ours and theirs)
- Look for BHs in accreting binary systems
- Best candidate: Cygnus X-1

Ch 9.—Supermassive BHs

- 1930s—Bell engineer finds radio noise from center of galaxy
- 1940s—Amateur builds first radio antenna and finds "radio loud" spots including center of galaxy
- · Postwar: radar engineers help with radio astronomy (more interplay war/science)
- 1949—built radio interferometers...to get resolution
- 1950s-Discovery of radio galaxies
- 1960s—Discovery of quasars
 - Moving at incredible speeds (e.g. 37% of c)
 - Billions of light years away

 - Meant hugely brightNot bigger than a light-month

What powers quasars?

- Chemical? Nuclear? Antimatter?
- Gravity? First case where one really needs GR?
- Gigantic, spinning black hole:
 - Fit the light-month size
 - Can power a jet stably for millions of years..hole's rotation acts as gyroscope despite accretion
 - Can produce magnetic fields which can get electrons to radiate synchrotron radiation

Ch. 10-Gravitational Radiation

- · History shows opening of new spectra brings new physics:
 - Radio astronomy
 - X-Ray astronomy
 - Gamma-ray astronomy
- These are all electromagnetic!

GR Waves

- What's waving?
- What info do they carry?
- Why so weak?

GR Detection

- Weber
- Thorne
- LIGo
- Need to know roughly what to look for:
 - Amplitude
 - Frequency
 - Event rate
 - Matched filtering