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Preface

If you are a student reading this in preparation for lab, I say good for you.
Many students likely will not read this, so to reward the diligent, I will give
you valuable information. No, this information won’t help you in life, but
there will be a time when it might help your grade. Guard this information
and don’t speak of it or it will lose its value. Some day I will ask you for this
information, and if you can remember it you’ll be rewarded. The information
you must keep secret is the number seventeen.

Lab is a special time, requiring from you something quite different than
most lecture classes. You have to participate, think, and fix. Many students
are frustrated by this, seeing any problem as a conspiracy to delay their
departure. First instinct is often to blame the equipment. I’ve taught at a
variety of campuses, with old and new equipment, and the refrain is always
the same, “why can’t you get working equipment?” Equipment, good or bad,
does not always work the way we expect. That does not necessarily mean
the equipment failed. Maybe you’re not doing something properly, or maybe
the Universe simply isn’t cooperating.

My favorite analogy for teaching physics is basketball. The coach tells
you how to aim, how to execute a proper shot, but you miss. Did the ball
have too much air and so it bounced off the rim? Is the backboard too tight?
A player doesn’t make excuses, and, for the most part, you shouldn’t in lab
either.

This guide is meant to provide you with information to execute the various
labs properly. It doesn’t spell out every detail. You’ll need to fill in the gaps.
Suggestions are welcome, but you need to realize that you’re expected to
think in lab. Remember, I have no need of 25 lab reports. You’re doing the
lab for the experience of doing it.

What are you supposed to get out of the lab? You are supposed to see
whether the Universe behaves the way we (the book and I) are telling you. Is
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energy conserved? Do oscillating systems have a natural, resonant frequency?
Can you do the labs without observing the behavior of the Universe?

Certainly. So many of the lab writeups I see have all the data and calculations
done correctly, but from the written discussion, it is quite clear that the
student took no time to think about what it all means. Such failures aren’t
a matter of intelligence, and it perhaps isn’t laziness. So many students have
been drilled incessantly for so long, that the classroom is the last place they
would think about actually using their brains. But please try.

What else should you get from lab? Well, there’s the little matter of
seeing what science is all about. You are supposed to be learning about
what it takes to collect data, analyze it critically, draw conclusions from this
data, and defend it against criticism. Science is this process. You should be
doing it in biology, in chemistry, and in physics.

Remember, coming to lab and executing the instructions are only the
beginning. Junior high kids can do that. The hard stuff happens once you’ve
followed instructions and collected the data.
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Chapter 1

Measurement

1.1 Introduction

As the first lab for this class, we stress here the skills needed for future
labs, namely taking and recording measurements and scientific writing. For
this reason and because we haven’t yet covered much material, this lab is
relatively straightforward, yet fundamental. Furthermore, this lab will serve
as an introduction to error analysis.

We’ll be measuring the density of various objects, a property of the mate-
rial not its shape. We can then compare various objects to determine whether
or not the objects are made of the same material. Such a judgment of the
material requires an argument to be made because it is highly unlikely that
two different measurements will yield exactly the same value.

Hence, in your writeup your mission is to present data effectively to sup-
port your argument as to whether any of the objects are made from the same
material.

1.2 Procedure

1.2.1 Measure the geometry of various objects

For each object, measure and record with appropriate tools the dimensions
so that you can then calculate the volume. Additionally, estimate the uncer-
tainty (“error”) for each measurement; for a ruler, this might be .5 mm.
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4 CHAPTER 1. MEASUREMENT

Keep in mind that the volumes of various shapes are:

V = l × w × h right parallel piped (3D rectangle)

V =
4

3
πr3 sphere

V = πr2 × h right cylinder

V =
1

3
πr2 × h cone

Also remember, in your writeup present all original data and uncertainties
along with computed quantities, preferably in a table. Don’t forget to record
the uncertainties in these measurements (i.e. 5 cm ± .05 mm).

Make sure you use both the ruler and the vernier calipers for different
measurements—they have different levels of precision.

1.2.2 Measure the mass of the objects

Using the triple beam balance as well as the electronic balance, measure and
record the mass of the various objects (remember to record the uncertainty
as well).

1.2.3 Record the data

After you’ve recorded the data, think about how best to present it to the
reader. Can you put the measurements of geometry of different types of
objects together? Can you also include the mass measurements?

At this point, you also need to calculate the (mass) density of the various
objects by dividing their mass by their volume. Pay attention to units. Make
sure that the units of density for all the objects are the same.

You will also need to calculate the uncertainty associated with the calcu-
lated densities. You will find the “Propagation of Uncertainties” chapter in
the Appendix to be quite helpful.

1.3 Writeup

Keep in mind that the goal here is for the lab writeup to be similar (but less
work!) to a scientific paper. Thus, do not say that “the point of the lab was
to learn about...”.
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Start the lab with the point of the lab. In paper, you’d generally
introduce the topic just a bit, but that’s not necessary here. Examples for
Physics 202 labs include:

1. Using an electron gun, we measure the charge to mass ratio for an
electron.

2. By plotting equipotential lines determined with a galvanometer, we in-
vestigate the geometry of electric field lines around various conductors.

3. We construct a low-pass filter using resistors and capacitors.

In paper, this clearly serves to tell the reader why you’re doing the lab, but
it also serves to tell me whether you understand the importance of the lab.

Follow this with the data. Many people underestimate the importance of
presenting this clearly with forethought. You want to put as much into tables
as possible to make it easy to read. In many labs in high school you might
have gotten worksheets with tables which you just fill in. However, you need
to develop the skill to determine how to organize the tables yourself.

Perhaps the hardest part is to analyze the data and draw conclusions
from it. Usually one starts with simple observations about the paper. Don’t
assume that the reader is going to see what you say. For example, if you
say some set of values are all the same, will the reader agree? Instead say
something more detailed such as “the difference between the minimum and
the maximum values was only 0.01 cm which is small compared to....”

I usually provide you with questions for each lab. These aren’t to be
answered like a worksheet. Instead they are to guide you in terms of what
you want to analyze.

1.4 Guiding Questions

1. Which objects do you suspect are made from the same material?

2. Can you determine certain objects to be made of different materials?

3. Are the rulers more inaccurate than the calipers? Are they less precise?

4. Is the balance more inaccurate than the electronic scale? Are they less
precise? Do the measurements from the various devices agree with each
other?



6 Static Forces

5. Look up the densities in your text or elsewhere. How confident can you
be that you’ve identified the correct material for each?



Chapter 2

Static Forces

2.1 Introduction

So far we’ve studied a few things which we’ll need later, but we have yet
to get to some “meat” of physics. We covered units which we’ll obviously
need in our studies. We covered kinematics, the equations describing motion.
And we’ve introduced vectors. However we really haven’t gotten to anything
that can be considered something other than math. Math is the language
of physics, and we have to speak it in order to do physics. But, math does
not ask “why”: why does something travel in a line? why do vectors work
so well at describing so much?, etc.

In this lab, and quite soon in lecture, we introduce the first of our physics.
We don’t start small though. In fact, we start with arguably the most im-
portant physics ever, namely Newton’s Laws. Mastery of these laws can get
you to the moon, a job as an acrobat, promotion in the army, and plenty
else.

Newton has three laws; we only need one for now. The relevant law says
that if you add up all the forces on an object (the net force) and get zero for
the sum, then that object will have zero acceleration. So, if no force then
no acceleration. If I pull on a rope really hard and you pull in the opposite
direction, then the two forces cancel out. So the net force is zero and Newton
says the rope doesn’t accelerate. Does this fit your intuition for the situation
described?

Here, we’ll be testing that law. One complication is that we force has
a magnitude (how hard do you pull the rope?) and a direction (in which
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direction do you pull?). Thus, we represent forces as vectors. This makes
writing down Newton’s Law as an equation pretty easy:

Σi
~Fi = 0

The symbol Σ (spelled “sigma”) simply means to sum a bunch of numbers
where i simply counts the things you’re adding (1, 2, . . . ).

To test it, we’ll apply forces to one particular object until we make the
acceleration of that object zero. Then Newton tells us that the vector sum
of these forces should be zero. To sum the vectors, we have to measure their
magnitudes and directions.

The equipment we’ll use is called a force table. In the center of the
platform is a small ring which is the object we want not to accelerate. To
apply forces, we’ll attach strings to the ring and hang masses on these strings.
The masses then hang over the pulleys. There will be one force per string
and the magnitude of that force will be computed by multiplying the weight
of the mass hanging on the string by g. The direction can be measured from
the printed angles on the platform itself.

2.2 Procedure

2.2.1 Lab Execution

1. Make sure the platform is level.

2. Setup the platform with the ring in the center held in place by the pin.
Don’t remove the pin until you’ve balanced the ring so that when you
remove the pin, it stays still.

3. To balance the ring, first attach mass hangers to the various strings
(one for each pulley present). Before doing so, confirm the mass of the
hangers themselves by measuring their mass.

4. Make sure that the strings point toward the center of the ring.

5. Secure the pulleys at various angles. Do not place the pulleys directly
opposite each other. Measure and record the angles. Be sure to note
where the angle 0◦ is, and in what direction the angle increases (CW
or CCW). Also note the uncertainty σθ in measuring each angle.
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6. Add masses to the hangers to balance the ring. One can also adjust
the angles, but then you’ll have to measure them again. It may be best
to measure angles after things are balanced.

7. Be sure to perturb the ring frequently when determining whether the
setup is balanced. Otherwise, the pulleys tend to stick and mislead you
into thinking things are balanced.

8. Record which string has how much mass attached to it. Include the
uncertainty σm in the mass measurement.

9. Repeat for another set of angles and with more mass on the strings.

10. While your setup is balanced, add a 5 g mass to one of the strings. Is
it still balanced? How much mass can be added with the setup still
being balanced? What does this exercise tell you?

2.2.2 Analysis

1. Sketch the vectors with appropriate axes.

2. Using tables, compute the magnitudes and x− and y− components of
the various vectors. Calculate their uncertainties as well (the relation
for σsin θ was given in Section 3.2.3; σcos θ = σθ sin θ.)

3. Compute the components of the net force on the ring Σi
~Fi and their

uncertainties.

4. Compute the magnitude and uncertainty of the net force.

2.3 Questions

1. Does it matter that the platform is level?

2. Pulleys are not perfectly free to rotate; there will always be some re-
sistance. How would this imperfection impact your results?

3. Chances are that your net force won’t be exactly zero. How close do
you expect it to be? Do you think your results provide supporting
evidence for Newton’s law, or do they refute the law?
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4. To what extent might the string cause error? If it stretches, does this
cause error?

5. Would you expect the error to be greater or less if you increased all the
masses on the strings and rebalanced?



Chapter 3

Velocity and Acceleration: Air
Track 1

3.1 Introduction

The motion we study is a somewhat idealized picture. In the real world,
objects rarely have constant acceleration because of friction, air resistance,
or any of many other factors. However, we need to start somewhere, and
many times we can ignore friction.

To explore such kinematics we will work with gliders on an air-track.
The air-track is basically a linear air-table similar to an air hockey setup.
Air blows through tiny holes and these provide a cushion of air on which the
glider moves.

Obviously they’re not perfect at ridding experiments of friction. But
they do well. In addition to studying kinematics in this lab, we want to get a
good understanding of how much friction remains because we will use these
air tracks later when we study collisions.

The air tracks are pretty simple. Plug in the air blower to the end of
the track, air comes out the holes, and you put the glider on. There are,
however, a few things to mention:

1. Don’t put the glider on the track unless the air is on, otherwise it’ll
scratch both surfaces.

2. Consider your release of the glider. Don’t push down on it, or its release
won’t be smooth.

11



12 CHAPTER 3. VELOCITY AND ACCELERATION: AIR TRACK 1

3. Be aware whether you’re supposed to release the cart with no velocity
or not.

4. Consider whether the track is level. The track can be “not level” in
two ways. Many times we’ll have it inclined on purpose, but otherwise
you’ll want to check that it is level. Also consider whether the track
is leaning to one side. If so, this will increase friction as well as being
generally unstable.

Perhaps the more difficult task is to master the photogate timers. To
actually study the motion, we’ll need to be able to measure times and speeds.
That’s what the timers are for. They work by having light sent across a space
(the gate) and are triggered when that light beam is broken. So it can time
how long a glider takes to cross the gate or it can time how long to go from
gate to another.

There are two modes that concern us and the mode is set with a switch
on the timer unit:

1. gate mode – the timer records for how long the beam is blocked. You
can compute a velocity by taking the length of the object blocking the
beam and dividing by the timer reading.

2. pulse mode – the timer starts timing when the beam is first broken
until it is broken a second time. You can compute a velocity by taking
the distance between the two gates and dividing by the timer reading.

Keep in mind, that two gates can be connected to a timer unit. So in gate
mode, you can block either gate. In pulse mode, you can start timing at one
gate and have it stop by blocking the second gate. Also remember that if
you’re measuring velocity with these gates, do not continue to push a glider
while it has entered the light beam of a gate. This will mess up your reading
because your hand may be accelerating the object while you’re trying to
measure the velocity.

Another feature of the timers is that they have memory. We will be using
this much of the time and it resembles “lap time” on a stop watch. For
example, say we’re in Gate mode. A glider goes through the gate and the
timer shows the time it took the glider to get through the gate. But now a
second glider goes through the gate. The timer reading doesn’t change but
the timer did measure this event. If you hit the toggle switch you read what’s
stored in memory. This time is actually the time for the second glider added
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onto the time for the first glider. So, to get the time for the second one, you
must subtract the first reading shown. This lets us use the timers to measure
two readings which is often important.

Here are some important points about the timers:

1. In general, release a glider before it enters a photogate.

2. Make sure the gate cables are pushed completely into the appropriate
socket otherwise they won’t work.

3. Check that the times you get are reasonable. Often, if the height of the
gate is too high or otherwise incorrect, all measurements will be about
0.014s which is totally wrong. What we measure does not move that
fast!. This is an example where you need to pay attention to your data
while you take it so that you can correct a problem.

3.2 Procedure

3.2.1 Deceleration on a level track

1. Level the track!

2. Setup two photogates a distance D apart (about 50 − 70cm) on the
track with the timer set to gate mode. You’ll have to use the mem-
ory feature. Measure the distance D between the photogates and its
associated uncertainty σD.

3. Send a cart (and measure its length L1 and uncertainty σL1) through
both gates at a reasonable velocity.

4. Measure, record, and compute the velocity of the glider and the un-
certainty in the velocity at both the first (t1, v1) and second (t2, v2)
photogate timer. You’ll need to state the uncertainty in the times as
well.

5. Repeat four times (twice in each direction).

6. Compute a percent difference for each case. Make sure to retain the
sign of the percent difference. In other words, the percent difference
should reflect whether the cart sped up or slowed down.
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Sample table (following measured quantities with the ± symbol in lieu of
a separate column for σ is also acceptable.)

D = ± L1 = ±
Direction (L or R) t1 (s) ± t2 (s) ± v1 (cm/s) σv1 (cm/s) v2 (cm/s) σv2(cm/s) % diff.

3.2.2 Velocity versus distance

1. Incline the track at about 2–10◦.

2. Setup a single photogate near the low end of the track set to gate mode.

3. Place the glider a distance D = 5 cm along the track above the photo-
gate, and release.

4. Measure, record, and calculate the timer reading and velocity of the
glider.

5. Repeat the measurement a few times to get a good average.

6. Repeat from step (3) increasing the distance D from the gate increasing
by 5 cm (so D = 5 cm, 10 cm, 15 cm, . . . )

7. Make a plot of the average velocity, vav, versus D.

8. Try plotting some other function of v (say
√

v, 1/v, v2, etc.) versus D
until you arrive at something that looks linear.

Sample table:

estimated angle = ±
D (cm) σD (cm) t1 (s) ± t2 (s) ± t3 (s) ± tav (s) σt (s) vav (cm/s) σv (cm/s)
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3.2.3 Determining g

1. Incline the track at about 2–10◦.

2. Measure the height and length of the incline and compute the angle θ
either via

θ = tan−1

(
height

length on table

)
or

θ = sin−1

(
height

hypotenuse

)
Make sure that the length and height correspond to sides of a right
triangle formed by the track and the table. In particular, measure the
height of the track as compared to the position at which the track is
level. Compute the uncertainty (hint: calculate the uncertainty in sin θ
or tan θ, and then use σsin θ = σθ cos θ or σtan θ = σθ sec2 θ.

3. Set up two gates some distance away and measure the distance, D,
between them. Put the timer in gate mode.

4. Release the glider above both the gates, and record the timer measure-
ments. Compute the velocity v1 at the top gate and then the velocity
at the lower gate v2.

5. Repeat for different gliders (record lengths L) or with extra mass on
the glider (record the entire mass of glider and masses used, m).

6. For each case, compute the acceleration via

a =
v2

2 − v2
1

2D

and calculate σa.

7. If the track were vertical, then we would have a = g. If the track were
perfectly level, then a = 0. It turns out that for a given inclination
angle, a = g sin θ. For each case, compute g via:

g =
a

sin θ

and calculate σg.
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8. Compute an average value of g and σg.

Sample table:

height = ± length = ±
θ = ±

L (cm) ± m (kg) ± D (cm) ± t1 (s) ± t2 (s) ±
. . .

v1 (cm/s) σv1(cm/s) v2 (cm/s) σv2(cm/s) a (cm/s2) σa(cm/s2) g (cm/s2) σg(cm/s2)

3.3 Questions to think about

These do not have to be answered and turned in. However, I do want you to
read these questions before you execute the lab so that you can think about
important things and get the most out of the experience. You can also use
these questions to review for the final.

Section 3.2.1:

1. In the ideal case (no friction, air resistance, etc.), what would be the
relationship between v1 and v2?

2. What does the percent difference mean? How would you make use of
this information in other labs/measurements with the air track?

3. Is it a large percent difference? Would it be bigger or small if we used
gliders on wheels? Gliders on a wet surface? How good a job is the air
track doing in getting rid of friction?

4. Is v1 greater than or less than v2? Is this expected? If it’s not expected,
can you explain it?
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5. Why should you do this in both directions? Would you expect a dif-
ferent result? Did you see a different result?

Section 3.2.2:

1. Why was the plot of v versus D not linear? Why was the plot of what
you chose linear?

2. Do you see an effect due to friction? Can you determine approximately
how big an affect it would be? If you don’t see an effect, what effect
would be apparent if friction played a larger role?

Section 3.2.3:

1. What angle would be the best to use? Can the angle be too big or too
small?

2. In which quantity are you most uncertain?

3. Was the overall uncertainty in g large or small?

4. Was this experiment a success? Do accept the “accepted” value of
9.8 m/s2?

5. How would friction affect your results? Did it affect your results?
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Chapter 4

Mechanical Advantage

4.1 Introduction

Pulleys are an interesting type of machine. They’re simple enough for easy
investigation and yet at the same time they demonstrate some important
concepts of physics. They also serve as a transition from describing systems
with forces and Newton’s Laws to describing systems with work and energy,
a transition we’ll be making in lecture within the next couple weeks.

As an introduction, consider the simplest pulley system, in particular
the n = 1 system where n describes the number of pulleys being used (see
Fig. 4.1. If on one end of string we place some mass M (the load to be lifted),
then we can pull on the end of the pulley (after draping it over the single
pulley) to lift the load. The load will have weight Fw = mg. We can measure
the lifting force Fl using a spring scale. If the pulley is ideal (no friction or
resistance to turning) and the string doesn’t slip, then you should be able to
reason that Fl = Fw.

Does that mean the pulley doesn’t help us? After all, we still have to lift
with the same force as if we just grabbed the load in the first place.

We next consider the n = 2 pulley system. You will be experimenting
with various n-pulley systems to measure what they do, but you need also
to be able to analyze and predict their behavior.

In addition to computing the weight Fw lifted and the lifting force Fl,
you will also be computing two other quantities. The first is mechanical
advantage, MA, defined by

MA ≡ Fw

Fl

.
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Figure 4.1: Diagram of an n = 1 pulley system.

The second is work done, W , defined by:

W ≡ F h

where h is the distance over which the force acts. Thus we can define the
work done in lifting as Wl = Fl hl and the work of the weight as Ww = Fw hw.

In our normal SI units, work has units of N ·m which has a special name,
Joules. This is a unit of energy, and indeed work is a form of energy. You
might suspect energy is conserved from either past experience or common
sense, and so you’ll investigate if such is demonstrated here.

You should get the following out of this lab:

1. Understand how much the pulleys benefit in lifting.

2. Understand why the pulleys benefit in lifting and be able to analyze it.

3. See how energy comes into play here, and see the beauty of how the
analysis yields its conservation.

4.2 Procedure

4.2.1 n = 1 Pulley System

As we do in most of these labs, we start by looking at the simplest system. We
can usually get a good handle on what should happen here, so the simplest
system is usually one we can get an idea of what kind of error to expect in
the more complicated situations.
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1. Set up the n = 1 system (as in Fig. 4.1) with some weight whose mass
you measure. Record the uncertainty in the mass.

2. Using the spring balance, record the minimum force necessary to lift it
and the uncertainty.

3. Record the distances you pull the string and the distance that the
object moves. Record the uncertainties.

4. Compute the MA and the uncertainty; compare to what you expect.

5. Repeat for 3 different masses.

4.2.2 n = 2 Pulley System

1. Set up the n = 2 system and repeat the procedure from the n = 1
system.

4.2.3 n = 3 Pulley System

1. Decide how to setup this system and sketch it in your lab report.

2. Set up the n = 3 system and repeat the procedure from the n = 1
system.
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Chapter 5

Hooke’s Law

5.1 Introduction

Continuing with forces, we now encounter the force of the spring. The force
due to a spring is called a restoring force because the force it exerts is that
which opposes a deformation. Hence, if you compress the spring, the spring
pushes to elongate itself. If you elongate the spring, it pulls back to compress
itself to its natural length. So, if the force exerted by the spring is F and
deform it some distance x, then the fact that it is a restoring force implies
that F and x will have opposite signs.

Another property of the spring is that for small displacements x, the
force is linearly related to the deformation. In other words, F ∝ −x. This
property shouldn’t be taken for granted, and in this lab we’ll explicitly deal
with a rubber band which is not expected to have this property (but which
should nevertheless exert a restoring force). We can go a step further, and
write down Hooke’s Law for the spring

F = −kx

where we have put in a constant of proportionality so that we can write the
relationship as an equation. This constant reflects the intrinsic properties of
the spring and is called the spring constant. Roughly, it’s the stiffness of the
spring, but it doesn’t depend on x.

In the first two procedures below, you should be certain to note:

1. whether the rubber band has a force linearly related to the displacement
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2. whether the spring has a force linearly related to the displacement.

You should also recall in the last lab dealing with pendulums, we en-
countered simple harmonic motion. I wrote there that harmonic motion was
everywhere, and indeed we encounter in the spring. If one puts a mass m on
an upright spring, deforms it, and then releases it, the mass executes simple
harmonic motion moving up and down. The theoretically predicted period
follows the relationship

T = 2π

√
m

k
.

Thus, if we measure the period for various values of m, we should be able to
obtain another measurement of k and compare to the value obtained earlier.
Regardless of the value however, one should note from their data to what
extent this relationship holds.

5.2 Procedure

5.2.1 Rubber-band

1. Suspend a rubber-band on the spring apparatus (carefully remove the
suspended spring first).

2. Attach a mass hanger with appropriate mass and note the displacement
(look at how far the bottom of the mass hanger moves when you allow
the band to stretch).

3. Record the displacement yi and the total mass mi (including the mass
of the hanger).

4. Repeat for at least 6 different masses which span an appropriate range.

5.2.2 Spring

1. Suspend the spring on the spring apparatus.

2. Attach a mass hanger with appropriate mass and note the displace-
ment.

3. Record the displacement yi and the total mass mi (including the mass
of the hanger).
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4. Repeat for at least 6 different masses which span an appropriate range.

Analysis: Plot by hand (preferably on the same graph) the displacement yi

(vertical axis) versus the mass mi (horizontal axis) for both the rubber band
and spring. Is the plot for the band linear? What about for the spring? Add
a best fit line to the spring points. From the slope of this graph (mig = |kyi|),
obtain a value for the spring constant k in units of N/m.

5.2.3 SHM

1. Suspend the spring on the spring apparatus.

2. Attach a mass hanger with appropriate mass. You don’t want too much
mass nor too little where the masses bounce into the air.

3. Stretch the spring and release.

4. Time an appropriate number of cycles from which you can obtain the
period from division.

5. Repeat for at least 6 different masses.

6. Plot T 2 versus m. Add a best fit line. Obtain a second value of k.
Compare it to your earlier obtained value of k.

Rubber-band:

i mi(g ± ) yi(cm± )

1
2
3
4
5
6

Spring:

SHM:
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i mi(g ± ) yi(cm± )

1
2
3
4
5
6

i mi (g ± ) # Oscillations Time (s± ) T (s)

1
2
3
4
5
6
7
8



Chapter 6

Centripetal Force

6.1 Introduction

In circular motion, one has acceleration. It is this acceleration which contin-
ually turns the object from what would otherwise be a straight line path.
To provide this acceleration, one needs a force, called the centripetal force.

In this lab, we want to study the case of circular motion. In lecture,
we can determine how much force is needed to keep an object of a certain
mass M moving in a circular orbit with radius R with period T . But is this
correct?

In this lab, we’ll measure the parameters above (M , R, and T ) and there-
fore we’ll be able to compute the theoretical amount of centripetal force
Ftheoretical needed. However, we’ll also measure directly the force being used
as the centripetal force Fexperimental. By comparing these two values, we’ll be
able to conduct a test, but what are we actually testing?

As a side note, I should mention that circular motion often confuses
students who picture circular motion as some sort of “steady” motion because
things seem to stay the same. Some students therefore assume that forces
balance out. They don’t! Remember we have continuous acceleration which
means the forces do not balance. The other confusion is that students often
think that the centripetal force exists in addition to the other forces in the
setup. That’s not true. Think of “centripetal force” as a title, like “President
of the United States.” If we have President Bush in a room, there’s only one
person there, not the President and George!
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Figure 6.1: Picture of the centripetal force apparatus.

6.2 Procedure

1. Measure the mass of the bob along with your uncertainty in its mea-
surement.

2. Fix the pointer at a certain position by tightening the screws on the
baseplate. This fixes the radius R of the circular path of the bob so
measure this radius as the perpendicular distance from the pointer to
the axis around which the bob spins.

3. Hang the string that is attached to the bob over the pulley. Add enough
mass to the hanging string so that the spring stretches enough that the
bob sits directly above the pointer. Make sure the string is horizontal
and the bob suspension is vertical.

4. Measure the amount of hanging mass m, and compute the tension in
the string, Fexperimental = mg. This tension is the experimental value
because it’s a measurement of the force needed for the circular path.

5. Remove the string and hanging mass. Manually spin up the bob so
that it traces a circular path which carries the bob directly over the
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pointer. Then measure the period. The best way to do so is to choose
some number of revolutions N and measure the time t it takes for the
bob to complete these. Then divide to get the period T = t/N .

6. Compute the speed of the bob v. Since the bob traverses the circum-
ference of a circle for each period, the speed is then v = 2πR/T .

7. Compute the centripetal force Ftheoretical = Mv2/R.

8. Compute the percent difference between the experimental and theoret-
ical values of the centripetal force.

9. Repeat for a different position of the pointer.
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Chapter 7

Ballistic Pendulum

7.1 Introduction

The ballistic pendulum provides a method to measure the velocity of a pro-
jectile. We shoot a projectile horizontally so that initially we’re only dealing
with kinetic energy. However, we arrange to have this projectile lodge itself
in a pendulum so that the pendulum swings upward. This converts the pro-
jectile’s kinetic energy into potential energy. If we can measure this potential
energy, then we know how much kinetic energy we had. With the kinetic en-
ergy, we can easily determine the speed of the projectile before the collision
with the pendulum.

To measure the potential energy U when the pendulum reaches its highest
point, we can use the fact that the potential energy is gravitational such that
U = mtotalgh. Here, mtotal is the total mass of the pendulum M plus the
mass of the projectile m. The height to which the pendulum rises is h.

Equating the kinetic and potential energies

1

2
mv2 = (M + m) gh, (7.1)

we can solve for the velocity of the projectile

v =

√
(M + m)

m
gh. (7.2)

This whole process leaves with a measurement of the initial velocity of
the projectile, but we have not tested anything yet. We want to test to see
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Figure 7.1: Picture of the ballistic pendulum apparatus.

how accurate this measurement is. Perhaps energy is not conserved. Another
way we can get the velocity is to shoot the projectile horizontally with no
pendulum. The projectile will shoot off and hit the floor. If we can measure
the distance the ball travels horizontally X along with the distance it falls
vertically Y , then our knowledge of projectile motion can tell us the initial
velocity.

We look first in the vertical direction. The projectile has zero initial
vertical speed and falls distance Y in a time t with acceleration g:

Y =
1

2
gt2. (7.3)

In the horizontal direction, the projectile has constant speed (why constant?)
and goes a distance X in a time t (the same time as above):

X = vt. (7.4)

If one combines these two equations and you can then solve for v.
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7.2 Procedure

7.2.1 Part I:

1. Measure the mass of the projectile, m.

2. Measure the mass of the pendulum, M .

3. Fire the projectile 5 times, and measure the vertical distance it travels
upward, h.

4. Calculate the value of initial vI .

7.2.2 Part II:

1. Move the pendulum out of the way of the projectile.

2. Fire the projectile horizontally onto the floor. Use carbon paper over
white paper on the floor to mark how the projectile traveled.

3. Measure the horizontal distance, X the projectile traveled.

4. Measure the vertical distance, Y the projectile fell.

5. Determine the initial horizontal velocity, vII .

6. Compute a percent difference between vI and vII .
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Chapter 8

Moment of Inertia

8.1 Introduction

The moment of inertia of an object is a measure of how difficult it is to get
an object spinning (angular acceleration) in much the same way that mass is
a measure of how difficult it is to accelerate (linear acceleration) an object.
One difference though, is that we assume mass to be fundamental whereas
we can calculate the moment of inertia from how the mass of an object is
distributed. When a skater pulls her arms inward during a spin, her mass
stays the same but its distribution changes, as does her moment of inertia.

In this lab we’ll measure the moments of inertia for a few different objects
by spinning them up and measuring the appropriate dynamical quantities.
We can compare these experimental results to calculations of the moments
from standard formulas which only need to know the geometry of the objects.

The dynamical measurement follows from an argument we present here.
We use a driving mass m which we hang from a cord a distance h from
the floor. The driving mass takes a time t to fall, during which its average
velocity obeys

v̄ =
h

t
. (8.1)

The average velocity is just half of the final speed v because it starts from
rest. Hence, we have the relationship

v =
2h

t
. (8.2)

The cord spins the drum. If we denote the radius of the drum as R, then the

35



36 CHAPTER 8. MOMENT OF INERTIA

angular velocity ω follows

ω =
v

R
=

2h

Rt
. (8.3)

With these relations, we now consider that energy should be conserved for
this system. Initially nothing is moving and the energy is all potential. In
the final situation, the driving mass is just about to hit the floor and the
drum is spinning. Hence, the final energy is all kinetic and we have

mgh =
1

2
mv2 +

1

2
Iω2. (8.4)

Here, I denotes the moment of inertia of the drum and everything attached
to it. With some algebra and the various relations above, the moment of
inertia becomes

I = mR2

[(
gt2

2h

)
− 1

]
. (8.5)

8.2 Procedure

1. Measure the diameter of the drum and compute its radius.

2. Execute/repeat the following for each case of: (i) nothing, (ii) the ring,
(iii) the disk on the cross.

3. Determine (and record) the compensating mass, the mass needed to
counterbalance the frictional forces. The compensating mass provides
just enough force to keep the drum rotating at constant angular velocity
and should be in the range from 0 to 20 grams.

4. Determine an appropriate amount of driving mass for each case. Too
much mass and the system will move too fast for good results. Too
little will result in friction playing a large roll and ruining your results.
Keep in mind that the driving mass should be recorded as the total
amount of mass on the string minus the value you have determined as
the compensating mass.

5. Measure the distance the driving mass falls, h.

6. Measure the time t for the driving mass to fall to the floor. Take and
record five measurements, using the average in your calculations.
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7. Compute the moment of inertia using the dynamical equation presented
above for each case.

8. Compute the moments of inertia of just the ring using

Iring = Icross+ring − Icross

and just the disk
Idisk = Icross+disk − Icross

.

9. Calculate the moment of inertia of the disk by measuring its mass, M
and radius, r and computing

Idisk,theoretical =
1

2
Mr2.

10. Do the same for the ring

Iring,theoretical = Mr2.

11. Compare the two sets of moments of inertia



38 Simple Harmonic Motion



Chapter 9

Simple Harmonic Motion

9.1 Introduction

A simple pendulum consists of a mass which hangs via a string from a fixed
point at which the string is attached. Ideally, the string has no mass and
the object with mass has no size (i.e. a particle). We can then fully specify
the pendulum with very few pieces of information. All we need is the mass
of the object M , the length of the pendulum L, and the angle from which
we release it θ. These data specify the pendulum, but in this lab we’ll be
measuring the time it takes from release of the pendulum until it repeats the
same motion, namely the period T .

We study pendulums in part because of this simplicity but also because
of the ubiquity of their motion. In particular, the pendulums exhibit simple
harmonic motion. Such motion can be characterized by the functions sin
and cos. For example, if you were to shine a flashlight directly down on the
pendulum bob, the position of the shadow, x, would vary in time as

x = A sin ωt.

So, x would “swing” from A to −A and back again, repeating the motion
in time. The amplitude of the swing is A. The parameter ω is called the
angular frequency because when you multiply by t you get an angle (with
units of radians). To see that things repeat, take the sine of ωt = 0 and sine
of ωt = 2π.

The parameter more common to everyday language is (just plain old)
frequency, f . Frequency f is just the rate of repetitions for which the usual
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unit is cycle/s. However, cycle isn’t a real unit so this is really just 1/s. To
avoid some confusion (to some people, writing 1/s looks strange), we have a
name for this unit called the Hertz, Hz = 1/s. Angular frequency is related to
regular frequency by ω = 2πf and has in units of radians/s. Again, radians
aren’t a real unit either. The final term is the period, T which is the time it
takes for a cycle to repeat. You should be able to figure out that it is related
to frequency by T = 1/f .

Understanding simple harmonic motion and the associated variables (T ,
f , ω, etc.) is not just to help you throughout your lives with pendulums!
Such motion is found throughout much of science, and indeed through much
of your everyday lives. You hear resonances (from the body of a violin to the
harsh sound of singing in the shower) all the time. Engineers have to “tune”
resonances when building just about anything from a bridge to your car so
that things don’t break.

Some experimental issues to which you should pay attention:

1. When measuring the length of the pendulum, you have to consider from
what and to what you should measure the length. From the start of the
object? The end of the object? The middle of the object? As a hint,
try to answer the question: what length for an ideal pendulum would
yield the same period as that you measure for your non-ideal pendulum?

2. When mounting the string make sure that the point at which you attach
it remains fixed. It often happens that your first attempt will allow the
string to spin around the mount. This will throw your results off.

3. When measuring the period, you can probably think of lots of sources
of error. However, if you measure the time for multiple periods and
divide by that number to get actual period (say 10), you might be able
to minimize that error. However, what’s the best number of repetitions
to time? If you time a large number (say 100), you might run into other
problems. As is usual, you need to find a good balance.

4. Keep in mind that you will be altering various parameters of the pen-
dulum as you go, so it pays to plan a bit how will adjust things for
each of the following sections.

5. Because we’re looking at how the period is affected by physical changes
to the pendulum, it makes sense to get a good grasp of the random-
ness of the periods we measure. In other words, say you measure the
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period of a pendulum to be 1.323s. Now, don’t change anything, but
simply repeat the measurement. What are the chances of measuring
precisely the same value again? By repeating the same measurement a
few times, you should have a good idea what your true uncertainty in
measurements of T are.

9.2 Procedure

9.2.1 Dependence of Period on Θ

1. Pick and record a length for the pendulum.

2. Pick and record a mass for the pendulum.

3. Pick a starting value of θ, say 10o and pull the string back to that angle.

4. Release the object and determine the period.

5. Choose a large value of θ, and repeat. You should be able to choose a
range of values, perhaps θ = 5◦, 10◦, 15◦, 20◦, 25◦, and then 50◦.

6. Try to quantify the dependence of the period of a pendulum on the
angle from which it is released. In other words, try and reduce your
data to a single number (preferably a percentage) which represents how
much the period changed when you changed θ.

7. You should also keep everything the same (L, M , and some value of θ)
and measure the period a few times. This should give you an idea of how
much you can expect the period to change just from the randomness
of your method.

9.2.2 Dependence of Period on M

1. Pick and record a length for the pendulum.

2. Pick and record a θ for the pendulum.

3. Pick a starting value of M .

4. Release the object and determine the period.
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5. Choose larger values of M and repeat (for at least 5 different masses).

6. Try to quantify the dependence on the mass of the pendulum bob.

9.2.3 Dependence of Period on L

1. Pick and record a M for the pendulum.

2. Pick and record a θ for the pendulum.

3. Pick a starting value of L.

4. Release the object and determine the period. Record its uncertainty
σT .

5. Choose larger values of L and repeat (say for values 5, 10, 15, 20, 25,
30, 35, 40, 45, 50).

Analysis:

1. For small displacements, theory predicts that the period is related to
the length of the pendulum by

T = 2π

√
L

g
.

2. Plot some function of T versus some function of L for this data so
that the theory predicts a line. Plot error bars for the data points as
demonstrated in class based on σT .

3. Add a best fit line to the graph and compute the slope of this best fit
line with appropriate units.

4. From the value of this slope, compute an experimental value of g and
extract σg from the error on the fit.
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Waves on a String

10.1 Introduction

This week we encounter yet another ubiquitous physical phenomenon, waves.
It goes without saying (but I state in anyway) that waves are everywhere we
look. Two of our senses depend on waves to inform us of our world, light
and sound waves. The dynamics of the ocean are dictated in large part by
waves. We can consider the electrical pulses that drive our heart as the sum
of various waves.

With this brief justification of our study of waves, let me also add that
waves are yet another example of harmonic motion.

10.2 Properties of Waves

Imagine a taught string stretched between two points (perhaps a violin or
guitar string). If we prick the string then a disturbance travels in both
directions up and down the string.

What happens when that disturbance hits the ends of the string where
the string is tied down? You should be able to realize that the end points
themselves can’t move. It turns out that the disturbance “bounces” (reflects)
off these end points much as a rubber ball bounces off a wall. Unlike the ball
however, the disturbances “flips” over when it bounces.

If we then continue to prick the string, then the “positive” disturbances
are traveling in one direction while the “negative” disturbances (the flipped
over, reflected disturbances) are traveling in the other direction. These dis-
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Figure 10.1: Schematic of a standing wave pattern.

turbances add together (superposition) as they pass each other and so, in
many places, they cancel out (where they have opposite sign) and in other
places add together. These two possibilities represent interference, either
constructive or destructive.

The destructive interference is the idea behind machines made to create
silence. For example, you can buy a device with headphones which uses
a microphone to detect sound waves that are about to hit your ears. The
machine then electronically flips the sound, reproducing the negative of the
incoming sound through the headphones. The ambient sound interferes with
the sound produced by the headphones so that the two waves cancel out
(interfere destructively). If the device could work perfectly, then you would
hear nothing!

Under special circumstances, disturbances and their reflections propa-
gate to form what is called a standing wave (see Fig. 10.1). Here, a pattern
is formed because at any point on the string, the disturbance and the re-
flection always add together in the same way. For such a pattern, there
are points which do not move (experience complete destructive interference),
called nodes and points which move more than any other points (complete
constructive interference), called antinodes.

Standing waves, when they occur, are an example of resonance. Just as
a pendulum has a natural period, as does the spring, a string will resonate
(i.e. form standing waves) only for certain frequencies. Imagine singing in a
bathroom. It doesn’t generally sound good because of the reflections. Indeed
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if you sing at certain frequencies, the sound might be particularly intense if
that frequency forms a standing wave. Why is the bathroom more likely to
produce resonance than, say, your living room?

We have already discussed frequency, angular frequency, and period in
previous labs. Here, we add wavelength, λ. For a standing wave, the wave-
length is just twice the distance between two nodes (or antinodes).

Fig. 10.1 helps clarify the conditions under which the string will demon-
strate standing waves. The condition is that half wavelengths “fit” on the
string between the two end points. So if the length of the string is L and a
half-wavelength is λ/2, then the condition for standing waves is that

L = n

(
λ

2

)
n = 1, 2, 3, . . .

where n is just an integer representing the number of half-wavelengths. We
also have the relationship between wave speed v and frequency as

λ =
v

f
.

The speed of the wave v is dictated by the tension in the string T and the
string’s linear mass density µ. For n = 1, the string oscillates at its lowest
natural frequency which is called the fundamental frequency of the string or,
equivalently, its first harmonic. For larger values of n, the string oscillates
at higher harmonics (e.g. the second harmonic).

As an example of harmonics, consider a trumpet, a piano, and a computer
playing a specific note, say middle C. These are all the same note, but they
certainly don’t sound the same. Musical instruments are tuned to resonate
at the frequencies of various notes. In a piano, the strings have just the right
length and tension for the desired note whereas in a trumpet you press valves
which change the length of the tube so that a note is in resonance. These
instruments also generate higher harmonics, but at much less loudness than
the fundamental. What differentiates the various instruments is the relative
loudness of these higher harmonics. The computer generated tone may not
generate any higher harmonics, which would sound very tinny and harsh.
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10.3 Procedure

It turns out for a string that the various parameters are related by

λ =
1

f

√
T

µ
.

1. Compute µ for the string: Cut a piece of string about 1.5m long.
Record its mass m and length L0 and then compute the linear mass
density µ = m/L0. From σm and σL0 , calculate σµ. Also record what
kind of string you’re using (kite string, black nylon string, etc).

2. Setup the vibrating string: Connect the string to the string
oscillator and to a pulley clamped to the other end of the table. Ensure
the string is level, and that the oscillator and pulley are well-aligned
with each other.

3. Add the mass: Allow the string to hang over the pulley and attach
a mass hanger.

4. Get familiar: By changing the amount of hanging mass, try to get
the string to resonate. Experiment with whether adding mass increases
the number of nodes or decreases the number.

5. Final setup: Get the string to have 7-9 nodes. When you have a
standing wave pattern, record the following:

(a) n – the number of loops in the patterns

(b) ms – the suspended mass, and its uncertainty

(c) ln – the length of one loop in the pattern, and its uncertainty

Repeat this for decreasing numbers of loops.

6. Measuring the loop length, ln: Measure ln as the distance from
where the string contacts the pulley (a node) to the node closest to this
point. Measure its uncertainty.

7. Compute: compute the following:

(a) T – the tension in the string, msg, and its uncertainty
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(b) λ – the wavelength of the standing wave, 2ln, and its uncertainty

8. Analysis: Again, you’ll need a computer here. From Eq. (10.3), find
appropriate quantities (e.g.

√
λ, λ2, 1/T , etc.) to plot such that you

expect a linear relationship. On such a plot, include error bars on the
relevant quantities, add a best fit line. From the slope of the best fit line
extract an experimental value of the string density µ; from the error on
the fit extract σµ. Compare µ and σµ to that already measured. The
frequency of the oscillator should be twice the frequency of the wall
current, 120 Hz.

9. Discussion:

(a) Did the string demonstrate standing wave patterns?

(b) Did your data follow the behavior predicted by Eq. (10.3)?

(c) Which data points are more trustworthy: the large ln values or
the small? Why?

(d) What’s the biggest source of error? How could you reduce it?
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Chapter 11

Speed of Sound in Air

11.1 Introduction

We have studied vibrating pendulums, springs, and strings, and seen what
natural frequency and resonance mean. Today, our quest is to measure the
speed of sound, and to do so, we utilize the idea of resonance once again.
However, here it is the air itself that will be vibrating.

The speed of sound depends on temperature, but at 20◦ Celsius it is
approximately 344 m/s. That’s pretty fast and you might imagine it would
be difficult to measure directly. Indeed, we use the wave properties of sound
to determine its speed.

Sound propagates as a pressure disturbance in air that our ears detect.
Sound also obeys the relationship we saw earlier with the string

v = λf (11.1)

where λ is once again the wavelength and f is frequency. This formula should
be easy to understand. Picture one cycle (i.e. one wavelength) of a wave that
moves to the right. This section takes a time T = 1/f to travel the distance
λ. So, using the simple formula v = distance/time, you get v = λ/T which
gives the relationship (11.1) above.

So, if we can find the wavelength and frequency for a sound wave, we
can just multiply them to get the speed. Determining frequency is relatively
easy: we just buy a tuning fork with the frequency stamped right on it!
We can get the wavelength in a manner analogous to what we did with the
string. We simply create resonance and use the properties of standing waves
to determine the wavelength.
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11.2 Procedure

To create resonance, we need an enclosure whose length we can vary (i.e.
tune). We use a long, vertical glass tube connected to an adjustable source
of fluid (here, water). By adjusting the height of the water in the column,
we change the length of the air column. By placing a tuning fork near the
top, we can send sound waves down the tube which will reflect upwards.
When the air column has the right length, we should get resonance. From
the length of the tube, we can determine the wavelength.

We need to determine how the wavelength is related to the air column
length L. For this you have to picture the standing wave pattern. At the
bottom of the air column where the water stops the air has no place to go
and there is thus a node there. At the top of the column you would expect
an antinode because the air is free to oscillate there. This would imply that
the integer numbers of quarter wavelengths would need to fit into the tube
to create a standing wave pattern because the distance between a node and
an adjacent antinode is λ/4.

However, because of effects due to the diameter of the tube, the antinode
will generally lie just a bit above the tube. So instead of taking the length of
the column tube and multiplying by 4 to get the wavelength, we’ll do some-
thing else to get a better value for the wavelength. We’ll find the distance
between the antinode and where the next antinode appears. This distance
should be λ/2.

1. Pick a tuning fork and record the frequency f stamped on it. Assume
that σf is negligible.

2. Strike the fork with a mallet to get it oscillating. Don’t hit the fork
with anything hard or you will damage it. Also, don’t hit the fork too
hard so that you don’t excite a higher harmonic than the frequency
specified on the fork.

3. Place the fork vertically just above the opening of the tube.

4. Adjust the height of the water column by lowering the input tube.
Carefully listen for resonance as you lower the water level. Determine
the length L1 of the water column when you hear the first resonance.
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5. Continue to lower the water level until you hear a second resonance
point. Record and determine the length of the column for the second
resonance L2. Note the uncertainty in determining L1 and L2.

6. Compute the wavelength via λ = 2 (L2 − L1). Compute σλ.

7. Compute the velocity of sound in air via v = λf . Compute σv.

8. Repeat for two other tuning forks with different frequencies.

9. Measure and record the temperature of the room, T , in Celsius, and
its uncertainty.

10. Using the formula:

v = 331.5
m

s
+ 0.607

m

s ◦C
T

compute the accepted value of the speed of sound v. Compute the
uncertainty in this quantity.
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Appendix A

Error, Uncertainty, and
Significant Digits

A.1 Concepts Introduced

uncertainty; error; systematic error; random error; significant digits; percent
error; precision; accuracy; uncertainty propagation; mean; standard devia-
tion; chi square

A.2 Errors

By the term error, I mean the difference between a given measurement or
assertion and the accepted value. I am 5’ 91

2
” tall. If you tell me that I am

5’ 8” give or take a half inch, then the error is 11
2
”. Thus, I differentiate

between the terms error and uncertainty. Other scientists and books do not,
so you’ll have to look at context. In particular, you should be aware that the
study and use of uncertainties in the lab is commonly called Error Analysis
because uncertainty and error are intimately related.

Random errors do not mean simply unexplained workings of the uni-
verse. Instead, it refers to errors with definite causes but whose effects occur
with arbitrary sign. For example, wind from an open window might affect a
measurement on a mass balance. If the wind comes at random times with
random pressures (i.e. it could be blowing on one side of the scale at one time
and the other at another time), then this would be random error. Taking
many measurements and averaging is often good at reducing the amount of
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random error (why?), but this is not always possible.
Systematic errors are the errors present which have effects with the

same sign. For example, measuring the acceleration of a cart down an inclined
air track, air drag would, in general, represent a systematic error tending to
make the observed acceleration less than would otherwise be expected if there
were no friction.

Personal errors are those committed by you. For example, if you write
in your lab “We forgot to level the platform and this caused error,” then that
is a personal error. It happens to be one for which you have no excuse; you
should have followed instructions and seen the error before you left lab so
that you could fix it.

A.3 Uncertainties

Any measurement is going to have inherent uncertainty. If you get on a
digital scale, and it says you weigh 150 lbs, it is obviously not exact. Some
other scales will be more precise and others won’t. However, they might
all say 150 lbs. How do we indicate what precision we have with a given
instrument?

First, I want to differentiate between precise and accurate. Let’s say
we have two scales which are completely accurate. In other words, we can
trust completely what they say. However, scale (A) is more precise than
scale (B). Let’s also assume that you weigh exactly 150 lbs. Then scale
(A) has a lower uncertainty than scale (B) and might read something like
150.000000 ± 0.000001 lbs. Scale (B), being less precise, would then have a
much higher uncertainty perhaps comparably to the typical bathroom scale
150± 1 lbs. Precision, as I use it, has nothing do with accuracy.

Now consider a similar situation in which two scales have the same pre-
cision. Scale (C) reads 150± 1 lbs and scale (D) reads 155± 1 lbs. How can
that be? We’re still under the assumption that the true weight is 150 lbs.
Well, we describe this situation by saying that scale (D) is less accurate than
scale (C). In fact, scale (D) is simply inaccurate. However, their precision is
still the same.

To get a better idea why every measurement has uncertainty, just imag-
ine the most precise measurement you can. Write it down. For exam-
ple, if I measure the length of something to be 1.2345678901234567890 ±
0.00000000000000000005 cm, that’s quite precise. The uncertainty is very,
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very small. But yet, this measurement can’t differentiate 1.23456789012345678903
cm from 1.23456789012345678997 cm.

To define terms, consider a measurement reported as E = 1.234±0.001J .
The absolute uncertainty in the measurement is denoted 4E and here
takes the value 4E = 0.001J (notice that the absolute uncertainty takes the
same units as the measurement). The fractional uncertainty is the ratio
of the absolute uncertainty to the value itself and is denoted by 4E

E
. Here it

takes the value 4E
E

= 0.0008 (or 0.08%; notice it has no units).
Unless otherwise noted, I want only one significant digit (and not more

than one) to denote either type of uncertainty. The uncertainty itself is only
approximate and thus it is confusing to put more than one digit for the
uncertainty.

A.4 Significant Digits

You should have experience with the concept of significant digits already,
but here is a brief review. In lab, unlike perhaps in other places, when you
present a number, such as by writing it in a lab write-up, you are asserting
that you know the number to be exactly as you write it. So if you use a ruler
to measure a length, let’s say, of 3.45inches, and write 3.4500inches you are,
in the very least, being very misleading. At the worst, you are being outright
dishonest.

So let’s say you’re adding two measurements, 3.45inches and 0.123inches,
to get, for example, a total length of something. How do you do it? Well, you
add the two as you normally would, and then consider the rules of significant
digits. The rule for adding numbers is that you start from the left keeping
all digits until rounding when you reach the place where a digit has no more
significant digits. So you’d add normally to get 3.573, and then, starting
from the left, you’d keep 3.57inches because the first number has no more
significant digits after the hundredths place. Since the next digit is 3, you
don’t need to round up. If you add 3.45inches to 0.127inches you would
instead get 3.48inches. The reason the rule works like this is because if you
don’t know the thousandths place digit of the first number, then it doesn’t
make sense to report a digit of 3 there in your summation. You simply don’t
know what goes there, so reporting something would be a mistake. These
same rules apply for subtraction.

Here’s a tougher example. Consider the summation below where I denote
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digits we simply don’t know by an X (as opposed to leaving it blank like we
usually do):

1.0XXXXXX
0.1XXXXXX
0.11XXXXX
0.111XXXX
0.1111XXX
0.11111XX
0.111111X
−−−−−−−−−−−
1.654321X

But what is 1 plus X? We don’t know. So the answer can only extend to
the tenths digit because we don’t have any Xs in that place. But instead of
it being simply 1.6, we have to round to get 1.7.

When multiplying (or dividing) two numbers, the rule is different. Con-
sider multiplying 0.10 with 1.23456789. The normal way to multiply gives a
result of 0.123456789 but this has too many digits. How many do you get rid
of? The rule is simple, though possibly not very intuitive. The number of
digits of the result of multiplying is equal to the least number of significant
digits of any of the numbers multiplied. We’re multiplying two numbers, the
first has 2 sig-digits, the second has 9 sig-digits. So the lesser of these is 2,
and so the final result has only 2 significant digits. The result is then 0.12.
Notice that which place the digits are in (tenths, hundredths, etc) doesn’t
matter.

One last thing. When computing something complicated such as (0.1 + 0.05)×
8 be careful to keep all digits possible so that you don’t introduce rounding
errors. For example, you might think the answer to the following would be
obtained by doing the following

(0.1 + 0.05)× 8
0.2× 8

2.

Here all the rules above were followed, but we got the wrong answer. Instead
we do the entire computation with all digits possible, but we’ll keep track of
the sig-digits separately in brackets:

(0.1 + 0.05)× 8
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0.15[0.2]× 8
1.2[1].

So the right answer is 1. In other words, always wait till the end of a com-
putation to round.

A.5 More Worked Examples

1. What is (1.30× 103) + (0.7× 101)?
This is easier if we right it out as

1300
+7

−−−−−−−−
1307

Here we’ve added normally, but now we have to figure out how many
digits to report. So let’s look at each of the digits of our preliminary
answer 1307. Starting from the left, the 1 is okay because we know all
the digits before the 7 are just zero. The same reasoning says that the
3 is fine. What about the zero? Well, we know zero plus zero is zero,
so we’re fine. What about the 7? Turns out that we can’t report this,
but why? We can’t report it as a seven because we don’t know that
0 + 7 is zero because we don’t know that the zero we wrote in the 1300
line is a zero (when we converted from scientific notation, we threw the
zero in to hold the place, but it’s actually an X!).
So we should have worked the problem like this:

130X
+7

−−−−−−−−
130X

and it would be clear the answer is 1.31× 103.

2. What is 5.4× 12, 345?
Plug into calculator to get: 66, 663.00. But that’s too many digits. So
look at the two numbers being multiplied; they have 2 and 5 significant
digits. Because 2 is smaller than 5, we know we should only report two
digits in our answer. So we round and get 6.7× 104.
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3. What is 0.344× (11.0 + 0.2345)?

0.344× (11.0 + 0.2345)
0.344× (11.2)

3.86

If you got 3.85 that’s not right. Keep all digits for the final computa-
tion: 0.344 × 11.2345 = 3.8647 and then round (not 0.344 × 11.2 =
3.8528 and round).

4. What is:

(0.345 + 12)× (0.001 + 0.005)

(1.3 + 1.2)× 4
?

Work out on calculator first to get: 0.007407000. Now go back to figure
out right number of digits:

12× 0.006

2.5× 4
0.07

1× 101

0.007

This tells you that you only have one significant digit. So now round
the exact answer to one digit and you get 0.007.

A.6 Questions to be answered

For the following, report with the correct number of digits and with the
appropriate uncertainties.

1. Using a balance in the lab, I measure the mass of a comb to be 9.3±0.4g.

(a) What is the absolute uncertainty?

(b) What is the fractional uncertainty?

2. Which of the following makes the most sense:

(a) 1.1kg ± 0.1N
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(b) 1.1± 0.11231N

(c) 1.1± 10.1kg

(d) 1.1± 0.1kg

3. How many significant digits are in the measurements: 1.234 inches, 1.5×
10−3 miles, 1300.1 seconds?

4. With the proper number of significant digits, what is the product of
0.012 and 1.234× 105?

5. What’s the result of

0.41× 0.00111

(5.3 + 0.65)× (0.0011− 0.0002)

6. What’s the fractional uncertainty of the measurement 5.293 ± 0.001
lbs? Of 10.30± 0.001 lbs? Which has the higher absolute uncertainty?
Which has the higher fractional uncertainty?

A.7 Acknowledgments and References
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Appendix B

Notes about Writeups &
Graphs

B.1 What I Want

Students always ask, “What do you want in the writeup?” If it were up to
me (wait, I guess it is up to me!), I would prefer to leave that completely up
so long as you convey in it the data, what you did with the data, and what
you can conclude from the data. It’s really that simple, but people always
want more constraints. So here goes....

• point – In one sentence, describe what the purpose of the experiment is.
Try to avoid bias (e.g. we are proving that energy is conserved). Good,
non-biased action verbs are test, investigate, measure, and determine.

• data – Present your data. Except in unusual circumstances, you need
to provide original data. For example, if you measure a bunch of times
for a cart to cross some distance and then compute a velocity from
that, you must include those original times, not just the computed
quantities. You must try to present your data in a logically organized
table(s).

• sample calculations – I do not want to see every computation you
do. Only a single instance of each type. I only look at this if I suspect
you computed something incorrectly.
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• discussion/conclusion – This is the hard part. It is this section that
will likely need the most work. The good news is that I hope that
everyone’s discussion improves throughout the year. At the very least,
my standards as far as what I expect will increase. First, let me note
that there is only one section here...you do not need to reiterate what
you say in a separate conclusion section. When you write this section,
imagine that someone that took the class last year is reading it and that
they are reading it first before having looked at the data. They know
about physics, but they’re not sure you expected, nor what you saw.
You should mention a few of the results from the data/calculations
section along with what they mean. For example, you might say:

The average difference between the final and initial velocities
was 8.3%. If there were no friction or air drag, we would have
expected this difference to be non-existent, and therefore it
seems reasonable to expect the effects of friction and drag to
lead to an 8% velocity drop.

This is much better than

The initial velocity in the first run was 8.2mm/s and in the
second run was 6.5mm/s. The final velocities were 7.6mm/s
and 5.6mm/s. These are obviously different so the veloc-
ity changed. Possible errors include the friction, drag, heat,
humidity, and personal error.

Do not (1) overload the reader with data values, (2) give a laundry list
of possible errors with no real explanation of how they would affect
that data values, (3) mention personal error.

In case it is not clear from the above, you do not need, and I will not read
any discussion of materials or procedure. We all know what we did and what
equipment we used. Also, these lab writeups should only be about 2 pages
and should be mostly written by the time you leave the classroom. In fact,
you should only need to spend at most an hour outside of class to complete
the writeup.
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B.2 Random issues

Reiterate important numbers in the paragraphs of your analysis so that the
reader doesn’t have to go back to the data to find the numbers. Be careful
not to put too many numbers in the text or it gets confusing.

Any and all measurements you take need to be in the writeup. So if you
measure something in one unit, and then convert to another unit, make sure
you record the original data. The idea here is that someone should be able
to reproduce all the steps you take after you measure the data if given just
your writeup.

Be careful when using “small”, “bigger”, and other words that are meant
to compare things. Be explicit in terms of what you’re comparing against.
For example, if I were to write:

Our error was 10% which is very small. Because it is small, our
test helps confirm Liebling’s law.

How is the reader to know that 10% is small? Small compared to what? It
would be better to write:

Our error was 10%. As discussed above, the wind provided an
unexpected source of error for which we could not account in our
analysis. However, it seems reasonable to expect that it likely
could account for such an error. In that case, these results support
the validity of Liebling’s Law.

Include all original data. If you compute something from some measure-
ments, do not just show me the computed quantity. The original data is
perhaps the most important part of the lab.

Write for an audience that might read a journal. Write not that you were
told to do something or that you did this to learn (both of which are true).
Write as if someone should be interested in reading it.

Discussing error:

1. What is a source of error?

2. Will it actually affect your results? For example,

3. How big is it?

4. Does the expected effect actually correlate with your observed error?
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5. Can you estimate the size of the error? If so, compare the estimate to
your observed error.

There is always the possibility that you made a mistake, what people
appear to call “human error.” Despite this possibility, do not mention it
in the writeup. If you suspect you made mistakes, it’s your obligation to
track them down not excuse them in the writeup. If everything appears
correct, then do the writeup and I’ll look for mistakes. In the real world,
your paper would get peer-reviewed and those reviewers would point out
mistakes. But you don’t see in journals, “well, maybe we made mistakes
measuring, calculating, etc.”

B.3 Guide to Writeup Grades

As somewhat of a guide for what is at least somewhat subjective, some
instructors might use a scale for lab grades as follows:

• 6 – Was present for lab, but writeup very incomplete

• 7 – Writeup has serious flaws and/or did not complete the purpose

• 8 – Attempted purpose but didn’t quite succeed or didn’t follow all
directions

• 9 – Succeeded at purpose but still has certain minor flaws

• 10 – Succeeds at purpose and succeeds at presentation in a convincing
manner

B.4 Making Graphs

A graph that plots “A vs. B” means that B is measured on the horizontal
axis while A is measured on the vertical.

Graphs require appropriate units on the two axis.
Data points should be plotted as just that, points. They should be clearly

visible. Regardless of what else appears on the plot (e.g. a curve which fits
the data), the point have to be visible so that the reader can evaluate them
(e.g. how well the curve fits them).

Make the plot as big as is convenient. If you have plenty of space on the
page, make it big. It’s hard to tell much from a small graph.
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B.5 Extracting Information from a Fit

You will need to be able to study the relationship among variables using a
graph and best fit line as tools.
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